File size: 5,934 Bytes
888d78f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
######################## Todos os Imports necessários ########################
import os
import re
import pickle
import pandas as pd
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import RSLPStemmer
# Imports necessários para DistilBert NER
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import torch
from sklearn.model_selection import train_test_split
from transformers import DistilBertTokenizerFast, DistilBertConfig, DistilBertForTokenClassification
from transformers import Trainer, TrainingArguments
from torch.utils.data import DataLoader, Dataset
from torch.utils.data import Dataset, DataLoader, random_split
from sklearn.metrics import precision_recall_fscore_support, accuracy_score
import evaluate
# Imports necessários para a interface Gradio
import gradio as gr

# Definir dispositivo (CPU ou GPU, se disponível)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Baixar recursos necessários do NLTK
nltk.download('stopwords')
nltk.download('punkt')
nltk.download('rslp')

# Carregar dados
file_path = "base_info_produtos.csv"
df = pd.read_csv(file_path, sep='\t')

# Configurar pré-processamento de texto
stop_words = set(stopwords.words('portuguese'))
stemmer = RSLPStemmer()

def preprocess_text(text):
    """Preprocessa o texto removendo stopwords e aplicando stemming."""
    words = word_tokenize(text.lower())
    words = [stemmer.stem(word) for word in words if word.isalnum() and word not in stop_words]
    return ' '.join(words)

# Concatenar colunas para enriquecer as informações
df.fillna('n/a', inplace=True)
df['concatenated'] = (df['nome'] + ' ' + df['tipo'] + ' ' + df['marca'] + ' ' + df['categoria'] + ' ' +
                      df['cor'] + ' ' + df['modelo'])

# Aplicar preprocessamento de texto
df['processed_text'] = df['concatenated'].apply(preprocess_text)

######################## TF-IDF ########################

# Verificar se os arquivos do modelo TF-IDF já existem
tfidf_dir = "tfidf_model"
vectorizer_path = os.path.join(tfidf_dir, "tfidf_vectorizer.pkl")
matrix_path = os.path.join(tfidf_dir, "tfidf_matrix.pkl")

with open(vectorizer_path, 'rb') as f:
    vectorizer = pickle.load(f)
with open(matrix_path, 'rb') as f:
    tfidf_matrix = pickle.load(f)
print("Modelo TF-IDF carregado com sucesso.")

def calculate_similarity(product1, product2):
    """Calcula a similaridade entre dois produtos."""
    product1_processed = preprocess_text(product1)
    product2_processed = preprocess_text(product2)
    product1_tfidf = vectorizer.transform([product1_processed])
    product2_tfidf = vectorizer.transform([product2_processed])
    similarity = cosine_similarity(product1_tfidf, product2_tfidf)
    return min(similarity[0][0], 1.0)

def search_products(query, top_n=5):
    """Realiza busca de produtos com base na similaridade TF-IDF."""
    query = preprocess_text(query)
    query_tfidf = vectorizer.transform([query])
    similarities = cosine_similarity(query_tfidf, tfidf_matrix).flatten()
    top_indices = similarities.argsort()[::-1][:top_n]
    results = df.iloc[top_indices].copy()
    results['probabilidade'] = [calculate_similarity(query, results.iloc[i]['concatenated']) for i in range(len(results))]
    return results[['nome', 'tipo', 'marca', 'categoria', 'cor', 'modelo', 'probabilidade']]

def extract_info_from_title(title):
    """Extrai informações de um título usando TF-IDF."""
    processed_title = preprocess_text(title)
    query_tfidf = vectorizer.transform([processed_title])
    similarities = cosine_similarity(query_tfidf, tfidf_matrix).flatten()
    top_index = similarities.argsort()[::-1][0]
    return df.iloc[top_index][['tipo', 'marca', 'categoria', 'cor', 'modelo']]

######################## NER DISTILBERT ########################

model_path = "ner_model"
tokenizer = "ner_model"

from collections import defaultdict
from transformers import pipeline

def get_most_cited_label_for_strings(string, model_path, tokenizer, device):
    strings = string.split(" ")
    classifier = pipeline("ner", model=model_path, tokenizer=tokenizer, device=device)
    results = {}
    
    # Initialize a list to keep track of entities and their positions
    entities = []
    
    for idx, string in enumerate(strings):
        classifier_output = classifier(string)
        label_scores = defaultdict(float)
        
        # Aggregate scores for each label
        for item in classifier_output:
            entity = item['entity']
            score = item['score']
            label_scores[entity] += score
        
        # Find the label with the highest cumulative score
        most_cited_label = max(label_scores, key=label_scores.get)
        
        # Store the entity and its position
        entities.append((idx, most_cited_label))
    
    # Sort entities by their original position in the input string
    entities.sort(key=lambda x: x[0])
    
    # Build the results dictionary aligned with the original input
    for position, label in entities:
        results[strings[position]] = label
    
    return results

######################## GRADIO INTERFACE ########################

# Habilitar modo de debug com a variável de ambiente GRADIO_DEBUG=1
os.environ["GRADIO_DEBUG"] = "1"

def search_interface(query):
    results = search_products(query)
    return results

def ner_interface(input_text):
    ner_predictions = get_most_cited_label_for_strings(input_text, model_path, tokenizer, device)
    return ner_predictions

search_demo = gr.Interface(fn=search_interface, inputs="text", outputs="dataframe", title="Busca de produtos")
ner_demo = gr.Interface(fn=ner_interface, inputs="text", outputs="json", title="NER Extraction")

demo = gr.TabbedInterface([search_demo, ner_demo], ["Busca de produtos", "Extração de features NER"])
demo.launch()