Spaces:
Sleeping
Sleeping
File size: 5,934 Bytes
888d78f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
######################## Todos os Imports necessários ########################
import os
import re
import pickle
import pandas as pd
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import RSLPStemmer
# Imports necessários para DistilBert NER
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import torch
from sklearn.model_selection import train_test_split
from transformers import DistilBertTokenizerFast, DistilBertConfig, DistilBertForTokenClassification
from transformers import Trainer, TrainingArguments
from torch.utils.data import DataLoader, Dataset
from torch.utils.data import Dataset, DataLoader, random_split
from sklearn.metrics import precision_recall_fscore_support, accuracy_score
import evaluate
# Imports necessários para a interface Gradio
import gradio as gr
# Definir dispositivo (CPU ou GPU, se disponível)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Baixar recursos necessários do NLTK
nltk.download('stopwords')
nltk.download('punkt')
nltk.download('rslp')
# Carregar dados
file_path = "base_info_produtos.csv"
df = pd.read_csv(file_path, sep='\t')
# Configurar pré-processamento de texto
stop_words = set(stopwords.words('portuguese'))
stemmer = RSLPStemmer()
def preprocess_text(text):
"""Preprocessa o texto removendo stopwords e aplicando stemming."""
words = word_tokenize(text.lower())
words = [stemmer.stem(word) for word in words if word.isalnum() and word not in stop_words]
return ' '.join(words)
# Concatenar colunas para enriquecer as informações
df.fillna('n/a', inplace=True)
df['concatenated'] = (df['nome'] + ' ' + df['tipo'] + ' ' + df['marca'] + ' ' + df['categoria'] + ' ' +
df['cor'] + ' ' + df['modelo'])
# Aplicar preprocessamento de texto
df['processed_text'] = df['concatenated'].apply(preprocess_text)
######################## TF-IDF ########################
# Verificar se os arquivos do modelo TF-IDF já existem
tfidf_dir = "tfidf_model"
vectorizer_path = os.path.join(tfidf_dir, "tfidf_vectorizer.pkl")
matrix_path = os.path.join(tfidf_dir, "tfidf_matrix.pkl")
with open(vectorizer_path, 'rb') as f:
vectorizer = pickle.load(f)
with open(matrix_path, 'rb') as f:
tfidf_matrix = pickle.load(f)
print("Modelo TF-IDF carregado com sucesso.")
def calculate_similarity(product1, product2):
"""Calcula a similaridade entre dois produtos."""
product1_processed = preprocess_text(product1)
product2_processed = preprocess_text(product2)
product1_tfidf = vectorizer.transform([product1_processed])
product2_tfidf = vectorizer.transform([product2_processed])
similarity = cosine_similarity(product1_tfidf, product2_tfidf)
return min(similarity[0][0], 1.0)
def search_products(query, top_n=5):
"""Realiza busca de produtos com base na similaridade TF-IDF."""
query = preprocess_text(query)
query_tfidf = vectorizer.transform([query])
similarities = cosine_similarity(query_tfidf, tfidf_matrix).flatten()
top_indices = similarities.argsort()[::-1][:top_n]
results = df.iloc[top_indices].copy()
results['probabilidade'] = [calculate_similarity(query, results.iloc[i]['concatenated']) for i in range(len(results))]
return results[['nome', 'tipo', 'marca', 'categoria', 'cor', 'modelo', 'probabilidade']]
def extract_info_from_title(title):
"""Extrai informações de um título usando TF-IDF."""
processed_title = preprocess_text(title)
query_tfidf = vectorizer.transform([processed_title])
similarities = cosine_similarity(query_tfidf, tfidf_matrix).flatten()
top_index = similarities.argsort()[::-1][0]
return df.iloc[top_index][['tipo', 'marca', 'categoria', 'cor', 'modelo']]
######################## NER DISTILBERT ########################
model_path = "ner_model"
tokenizer = "ner_model"
from collections import defaultdict
from transformers import pipeline
def get_most_cited_label_for_strings(string, model_path, tokenizer, device):
strings = string.split(" ")
classifier = pipeline("ner", model=model_path, tokenizer=tokenizer, device=device)
results = {}
# Initialize a list to keep track of entities and their positions
entities = []
for idx, string in enumerate(strings):
classifier_output = classifier(string)
label_scores = defaultdict(float)
# Aggregate scores for each label
for item in classifier_output:
entity = item['entity']
score = item['score']
label_scores[entity] += score
# Find the label with the highest cumulative score
most_cited_label = max(label_scores, key=label_scores.get)
# Store the entity and its position
entities.append((idx, most_cited_label))
# Sort entities by their original position in the input string
entities.sort(key=lambda x: x[0])
# Build the results dictionary aligned with the original input
for position, label in entities:
results[strings[position]] = label
return results
######################## GRADIO INTERFACE ########################
# Habilitar modo de debug com a variável de ambiente GRADIO_DEBUG=1
os.environ["GRADIO_DEBUG"] = "1"
def search_interface(query):
results = search_products(query)
return results
def ner_interface(input_text):
ner_predictions = get_most_cited_label_for_strings(input_text, model_path, tokenizer, device)
return ner_predictions
search_demo = gr.Interface(fn=search_interface, inputs="text", outputs="dataframe", title="Busca de produtos")
ner_demo = gr.Interface(fn=ner_interface, inputs="text", outputs="json", title="NER Extraction")
demo = gr.TabbedInterface([search_demo, ner_demo], ["Busca de produtos", "Extração de features NER"])
demo.launch() |