Spaces:
Sleeping
Sleeping
Upload seer.py
Browse files
seer.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import requests
|
6 |
+
from bokeh.plotting import figure
|
7 |
+
from bokeh.models import HoverTool
|
8 |
+
import joblib
|
9 |
+
import os
|
10 |
+
from date_features import getDateFeatures
|
11 |
+
|
12 |
+
|
13 |
+
# Get the current directory path
|
14 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
15 |
+
|
16 |
+
# Load the model from the pickle file
|
17 |
+
model_path = os.path.join(current_dir, 'model.pkl')
|
18 |
+
model = joblib.load(model_path)
|
19 |
+
|
20 |
+
# Load the scaler from the pickle file
|
21 |
+
encoder_path = os.path.join(current_dir, 'encoder.pkl')
|
22 |
+
encoder = joblib.load(encoder_path)
|
23 |
+
|
24 |
+
|
25 |
+
# Set Page Configurations
|
26 |
+
st.set_page_config(page_title="ETA Prediction App", page_icon="fas fa-chart-line", layout="wide", initial_sidebar_state="auto")
|
27 |
+
|
28 |
+
# Loading GIF
|
29 |
+
gif_url = "https://raw.githubusercontent.com/Gilbert-B/Forecasting-Sales/main/app/salesgif.gif"
|
30 |
+
|
31 |
+
# Set up sidebar
|
32 |
+
st.sidebar.header('Navigation')
|
33 |
+
menu = ['Home', 'About']
|
34 |
+
choice = st.sidebar.selectbox("Select an option", menu)
|
35 |
+
|
36 |
+
def predict(sales_data):
|
37 |
+
sales_data = getDateFeatures(sales_data).set_index('date')
|
38 |
+
# print(sales_data.columns)
|
39 |
+
|
40 |
+
# Make predictions for the next 8 weeks
|
41 |
+
prediction_inputs = [] # Initialize the list for prediction inputs
|
42 |
+
|
43 |
+
# Encode the prediction inputs
|
44 |
+
# numeric_columns = sales_data.select_dtypes(include=['int64', 'float64']).columns.tolist()
|
45 |
+
numeric_columns = ['onpromotion', 'year', 'month', 'dayofmonth', 'dayofweek', 'dayofyear', 'weekofyear', 'quarter', 'year_weekofyear', 'sin(dayofyear)', 'cos(dayofyear)']
|
46 |
+
categoric_columns = ['store_id','category_id','city','store_type','cluster','holiday_type','is_holiday','is_month_start','is_month_end','is_quarter_start','is_quarter_end','is_year_start','is_year_end','is_weekend', 'season']
|
47 |
+
print(categoric_columns)
|
48 |
+
# encoder = BinaryEncoder(drop_invariant=False, return_df=True,)
|
49 |
+
# encoder.fit(sales_data[categoric_columns])
|
50 |
+
num = sales_data[numeric_columns]
|
51 |
+
encoded_cat = encoder.transform(sales_data[categoric_columns])
|
52 |
+
sales_data = pd.concat([num, encoded_cat], axis=1)
|
53 |
+
|
54 |
+
# Make the prediction using the loaded machine learning model
|
55 |
+
predicted_sales = model.predict(sales_data)
|
56 |
+
|
57 |
+
return predicted_sales
|
58 |
+
|
59 |
+
# Home section
|
60 |
+
if choice == 'Home':
|
61 |
+
st.image(gif_url, use_column_width=True)
|
62 |
+
st.markdown("<h1 style='text-align: center;'>Welcome</h1>", unsafe_allow_html=True)
|
63 |
+
st.markdown("<p style='text-align: center;'>This is a Sales Forecasting App.</p>", unsafe_allow_html=True)
|
64 |
+
|
65 |
+
# Set Page Title
|
66 |
+
st.title('SEER- A Sales Forecasting APP')
|
67 |
+
st.markdown('Enter the required information to forecast sales:')
|
68 |
+
|
69 |
+
|
70 |
+
# Input form
|
71 |
+
col1, col2 = st.columns(2)
|
72 |
+
|
73 |
+
Stores = ['Store_' + str(i) for i in range(1, 55)]
|
74 |
+
Stores1 = ['Store_' + str(i) for i in range(0, 5)]
|
75 |
+
cities = ['city_' + str(i) for i in range(22)]
|
76 |
+
clusters = ['cluster_' + str(i) for i in range(17)]
|
77 |
+
categories = ['Category_' + str(i) for i in range(33)]
|
78 |
+
|
79 |
+
with col1:
|
80 |
+
date = st.date_input("Date")
|
81 |
+
# Convert the date to datetime format
|
82 |
+
date = pd.to_datetime(date)
|
83 |
+
onpromotion = st.number_input("How many products are on promotion?", min_value=0, step=1)
|
84 |
+
selected_category = st.selectbox("Category", categories)
|
85 |
+
|
86 |
+
|
87 |
+
with col2:
|
88 |
+
selected_store = st.selectbox("Store_type", Stores)
|
89 |
+
selected_store1 = st.selectbox("Store_id", Stores1)
|
90 |
+
selected_city = st.selectbox("City", cities)
|
91 |
+
selected_cluster = st.selectbox("Cluster", clusters)
|
92 |
+
|
93 |
+
# Call getDateFeatures() function on sales_data (replace sales_data with your DataFrame)
|
94 |
+
sales_data = pd.DataFrame({
|
95 |
+
'date': [date],
|
96 |
+
'store_id': [selected_store],
|
97 |
+
'category_id': [selected_category],
|
98 |
+
'onpromotion': [onpromotion],
|
99 |
+
'city' :[selected_city],
|
100 |
+
'store_type': [selected_store1],
|
101 |
+
'cluster':[selected_cluster]
|
102 |
+
})
|
103 |
+
print(sales_data)
|
104 |
+
print(sales_data.info())
|
105 |
+
|
106 |
+
|
107 |
+
if st.button('Predict'):
|
108 |
+
with st.spinner('Predicting sales...'):
|
109 |
+
sales = predict(sales_data)
|
110 |
+
formatted_sales = round(sales[0], 2)
|
111 |
+
st.success(f"Total sales for this week is: #{formatted_sales}")
|
112 |
+
|
113 |
+
# About section
|
114 |
+
elif choice == 'About':
|
115 |
+
# Load the banner image
|
116 |
+
banner_image_url = "https://raw.githubusercontent.com/Gilbert-B/Forecasting-Sales/0d7b869515bdf5551672f71b6e1f62be9902e3dc/app/seer.png"
|
117 |
+
banner_image = Image.open(requests.get(banner_image_url, stream=True).raw)
|
118 |
+
|
119 |
+
# Display the banner image
|
120 |
+
st.image(banner_image, use_column_width=True)
|
121 |
+
st.markdown('''
|
122 |
+
<p style='font-size: 20px; font-style: italic;font-style: bold;'>
|
123 |
+
SEER is a powerful tool designed to assist businesses in making accurate
|
124 |
+
and data-driven sales predictions. By leveraging advanced algorithms and
|
125 |
+
machine learning techniques, our app provides businesses with valuable insights
|
126 |
+
into future sales trends. With just a few input parameters, such as distance and
|
127 |
+
average speed, our app generates reliable sales forecasts, enabling businesses
|
128 |
+
to optimize their inventory management, production planning, and resource allocation.
|
129 |
+
The user-friendly interface and intuitive design make it easy for users to navigate
|
130 |
+
and obtain actionable predictions. With our Sales Forecasting App,
|
131 |
+
businesses can make informed decisions, mitigate risks,
|
132 |
+
and maximize their revenue potential in an ever-changing market landscape.
|
133 |
+
</p>
|
134 |
+
''', unsafe_allow_html=True)
|
135 |
+
st.markdown("<p style='text-align: center;'>This Sales Forecasting App is developed using Streamlit and Python.</p>", unsafe_allow_html=True)
|
136 |
+
st.markdown("<p style='text-align: center;'>It demonstrates how machine learning can be used to predict sales for the next 8 weeks based on historical data.</p>", unsafe_allow_html=True)
|
137 |
+
|
138 |
+
|