GhylB commited on
Commit
170615a
1 Parent(s): a7f9e16

Upload seer.py

Browse files
Files changed (1) hide show
  1. seer.py +138 -0
seer.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ from PIL import Image
5
+ import requests
6
+ from bokeh.plotting import figure
7
+ from bokeh.models import HoverTool
8
+ import joblib
9
+ import os
10
+ from date_features import getDateFeatures
11
+
12
+
13
+ # Get the current directory path
14
+ current_dir = os.path.dirname(os.path.abspath(__file__))
15
+
16
+ # Load the model from the pickle file
17
+ model_path = os.path.join(current_dir, 'model.pkl')
18
+ model = joblib.load(model_path)
19
+
20
+ # Load the scaler from the pickle file
21
+ encoder_path = os.path.join(current_dir, 'encoder.pkl')
22
+ encoder = joblib.load(encoder_path)
23
+
24
+
25
+ # Set Page Configurations
26
+ st.set_page_config(page_title="ETA Prediction App", page_icon="fas fa-chart-line", layout="wide", initial_sidebar_state="auto")
27
+
28
+ # Loading GIF
29
+ gif_url = "https://raw.githubusercontent.com/Gilbert-B/Forecasting-Sales/main/app/salesgif.gif"
30
+
31
+ # Set up sidebar
32
+ st.sidebar.header('Navigation')
33
+ menu = ['Home', 'About']
34
+ choice = st.sidebar.selectbox("Select an option", menu)
35
+
36
+ def predict(sales_data):
37
+ sales_data = getDateFeatures(sales_data).set_index('date')
38
+ # print(sales_data.columns)
39
+
40
+ # Make predictions for the next 8 weeks
41
+ prediction_inputs = [] # Initialize the list for prediction inputs
42
+
43
+ # Encode the prediction inputs
44
+ # numeric_columns = sales_data.select_dtypes(include=['int64', 'float64']).columns.tolist()
45
+ numeric_columns = ['onpromotion', 'year', 'month', 'dayofmonth', 'dayofweek', 'dayofyear', 'weekofyear', 'quarter', 'year_weekofyear', 'sin(dayofyear)', 'cos(dayofyear)']
46
+ categoric_columns = ['store_id','category_id','city','store_type','cluster','holiday_type','is_holiday','is_month_start','is_month_end','is_quarter_start','is_quarter_end','is_year_start','is_year_end','is_weekend', 'season']
47
+ print(categoric_columns)
48
+ # encoder = BinaryEncoder(drop_invariant=False, return_df=True,)
49
+ # encoder.fit(sales_data[categoric_columns])
50
+ num = sales_data[numeric_columns]
51
+ encoded_cat = encoder.transform(sales_data[categoric_columns])
52
+ sales_data = pd.concat([num, encoded_cat], axis=1)
53
+
54
+ # Make the prediction using the loaded machine learning model
55
+ predicted_sales = model.predict(sales_data)
56
+
57
+ return predicted_sales
58
+
59
+ # Home section
60
+ if choice == 'Home':
61
+ st.image(gif_url, use_column_width=True)
62
+ st.markdown("<h1 style='text-align: center;'>Welcome</h1>", unsafe_allow_html=True)
63
+ st.markdown("<p style='text-align: center;'>This is a Sales Forecasting App.</p>", unsafe_allow_html=True)
64
+
65
+ # Set Page Title
66
+ st.title('SEER- A Sales Forecasting APP')
67
+ st.markdown('Enter the required information to forecast sales:')
68
+
69
+
70
+ # Input form
71
+ col1, col2 = st.columns(2)
72
+
73
+ Stores = ['Store_' + str(i) for i in range(1, 55)]
74
+ Stores1 = ['Store_' + str(i) for i in range(0, 5)]
75
+ cities = ['city_' + str(i) for i in range(22)]
76
+ clusters = ['cluster_' + str(i) for i in range(17)]
77
+ categories = ['Category_' + str(i) for i in range(33)]
78
+
79
+ with col1:
80
+ date = st.date_input("Date")
81
+ # Convert the date to datetime format
82
+ date = pd.to_datetime(date)
83
+ onpromotion = st.number_input("How many products are on promotion?", min_value=0, step=1)
84
+ selected_category = st.selectbox("Category", categories)
85
+
86
+
87
+ with col2:
88
+ selected_store = st.selectbox("Store_type", Stores)
89
+ selected_store1 = st.selectbox("Store_id", Stores1)
90
+ selected_city = st.selectbox("City", cities)
91
+ selected_cluster = st.selectbox("Cluster", clusters)
92
+
93
+ # Call getDateFeatures() function on sales_data (replace sales_data with your DataFrame)
94
+ sales_data = pd.DataFrame({
95
+ 'date': [date],
96
+ 'store_id': [selected_store],
97
+ 'category_id': [selected_category],
98
+ 'onpromotion': [onpromotion],
99
+ 'city' :[selected_city],
100
+ 'store_type': [selected_store1],
101
+ 'cluster':[selected_cluster]
102
+ })
103
+ print(sales_data)
104
+ print(sales_data.info())
105
+
106
+
107
+ if st.button('Predict'):
108
+ with st.spinner('Predicting sales...'):
109
+ sales = predict(sales_data)
110
+ formatted_sales = round(sales[0], 2)
111
+ st.success(f"Total sales for this week is: #{formatted_sales}")
112
+
113
+ # About section
114
+ elif choice == 'About':
115
+ # Load the banner image
116
+ banner_image_url = "https://raw.githubusercontent.com/Gilbert-B/Forecasting-Sales/0d7b869515bdf5551672f71b6e1f62be9902e3dc/app/seer.png"
117
+ banner_image = Image.open(requests.get(banner_image_url, stream=True).raw)
118
+
119
+ # Display the banner image
120
+ st.image(banner_image, use_column_width=True)
121
+ st.markdown('''
122
+ <p style='font-size: 20px; font-style: italic;font-style: bold;'>
123
+ SEER is a powerful tool designed to assist businesses in making accurate
124
+ and data-driven sales predictions. By leveraging advanced algorithms and
125
+ machine learning techniques, our app provides businesses with valuable insights
126
+ into future sales trends. With just a few input parameters, such as distance and
127
+ average speed, our app generates reliable sales forecasts, enabling businesses
128
+ to optimize their inventory management, production planning, and resource allocation.
129
+ The user-friendly interface and intuitive design make it easy for users to navigate
130
+ and obtain actionable predictions. With our Sales Forecasting App,
131
+ businesses can make informed decisions, mitigate risks,
132
+ and maximize their revenue potential in an ever-changing market landscape.
133
+ </p>
134
+ ''', unsafe_allow_html=True)
135
+ st.markdown("<p style='text-align: center;'>This Sales Forecasting App is developed using Streamlit and Python.</p>", unsafe_allow_html=True)
136
+ st.markdown("<p style='text-align: center;'>It demonstrates how machine learning can be used to predict sales for the next 8 weeks based on historical data.</p>", unsafe_allow_html=True)
137
+
138
+