|
from accelerate.utils import write_basic_config |
|
from diffusers import DiffusionPipeline |
|
import torch |
|
import gradio as gr |
|
|
|
|
|
write_basic_config() |
|
|
|
base = DiffusionPipeline.from_pretrained( |
|
"Mahdy225/JAMAL", |
|
torch_dtype=torch.float16, |
|
use_safetensors=True |
|
) |
|
base.to("cuda") |
|
|
|
def text2Image(prompt, steps=50, scale=7, Width=1024, Height=1024): |
|
torch.cuda.empty_cache() |
|
image = base(prompt, num_inference_steps=steps, guidance_scale=scale, |
|
width=Width, height=Height, cross_attention_kwargs={"scale": 1}).images[0] |
|
return image |
|
|
|
ui = gr.Interface(fn=text2Image, |
|
inputs=[ |
|
gr.Textbox(label="Enter Text Prompt"), |
|
gr.Slider(minimum=1, maximum=150, value=50, label="Number of Inference Steps"), |
|
gr.Slider(minimum=4, maximum=10, value=7, step=0.1, label="Guidance Scale"), |
|
gr.Number(label="Image Width", value=1024), |
|
gr.Number(label="Image Height", value=1024)], |
|
outputs="image", |
|
title="JAMAL/ฺู
ุงู: Transforming Words into Reality" |
|
) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
ui.launch() |