Spaces:
Runtime error
Runtime error
GeorgeImmanuel
commited on
Commit
•
aa6a6fe
1
Parent(s):
49190f7
we have unzipped and moved the files to the right directory
Browse files- app.py +75 -0
- class_names.txt +101 -0
- effnetb2_20percent_101classes.pth +3 -0
- examples/example1.jpg +0 -0
- examples/example2.jpg +0 -0
- examples/example3.jpg +0 -0
- model.py +23 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import the essentials
|
2 |
+
import torch
|
3 |
+
import torchvision
|
4 |
+
import time
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
from pathlib import Path
|
8 |
+
from model import create_effnet_b2_model
|
9 |
+
|
10 |
+
with open(class_names.txt) as f:
|
11 |
+
class_names = [class_name.strip('\n') for class_name in f.readlines()]
|
12 |
+
|
13 |
+
device = 'cuda' if torch.cuda.is_available else 'cpu'
|
14 |
+
|
15 |
+
# creating the vit_b_16_model and loading it with state_dict of our trained model
|
16 |
+
effnetb2_model,effnetb2_transform = create_effnet_b2_model(num_classes=len(class_names))
|
17 |
+
effnetb2_model.load_state_dict(torch.load(f='effnetb2_20percent_101classes.pth'))
|
18 |
+
|
19 |
+
# create the predict function
|
20 |
+
def predict(img):
|
21 |
+
|
22 |
+
"""
|
23 |
+
args:
|
24 |
+
img: is an image
|
25 |
+
|
26 |
+
returns: prediction class, prediction probability, and time taken to make the prediction
|
27 |
+
|
28 |
+
"""
|
29 |
+
|
30 |
+
# transforming the image
|
31 |
+
tr_img = effnetb2_transform(img).unsqueeze(dim=0).to(device)
|
32 |
+
|
33 |
+
# make prediction with vit_b_16
|
34 |
+
model = effnetb2_model.to(device)
|
35 |
+
|
36 |
+
# starting the time
|
37 |
+
start_time = time.perf_counter()
|
38 |
+
|
39 |
+
model.eval()
|
40 |
+
with torch.inference_mode():
|
41 |
+
pred_logit = model(tr_img)
|
42 |
+
pred_label = torch.argmax(pred_logit,dim=1).cpu()
|
43 |
+
pred_prob = torch.max(torch.softmax(pred_logit,dim=1)).cpu().item()
|
44 |
+
|
45 |
+
# ending the time
|
46 |
+
end_time = time.perf_counter()
|
47 |
+
pred_prob = float(np.round(pred_prob,3))
|
48 |
+
pred_class = class_names[pred_label]
|
49 |
+
time_taken = float(np.round(end_time-start_time,3))
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
return pred_class,pred_prob,time_taken
|
54 |
+
|
55 |
+
|
56 |
+
# create example list
|
57 |
+
example_dir = Path('demos/foodvision_big/examples')
|
58 |
+
example_list = [['examples/' + str(filepath)] for filepath in os.listdir(example_dir)]
|
59 |
+
|
60 |
+
# create Gradio interface
|
61 |
+
description = 'A machine learning model to classify images into pizza,steak and sushi appropriately'
|
62 |
+
title = 'Image Classifier'
|
63 |
+
|
64 |
+
|
65 |
+
demo = gr.Interface(fn=predict, # this function maps the inputs to the output
|
66 |
+
inputs=gr.Image(type='pil'), # pillow image
|
67 |
+
outputs=[gr.Label(num_top_classes=1,label='Prediction'),
|
68 |
+
gr.Number(label='prediction probability'),
|
69 |
+
gr.Number(label='prediction time(s)')],
|
70 |
+
examples=example_list,
|
71 |
+
description=description,
|
72 |
+
title=title
|
73 |
+
)
|
74 |
+
|
75 |
+
demo.launch()
|
class_names.txt
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
apple_pie
|
2 |
+
baby_back_ribs
|
3 |
+
baklava
|
4 |
+
beef_carpaccio
|
5 |
+
beef_tartare
|
6 |
+
beet_salad
|
7 |
+
beignets
|
8 |
+
bibimbap
|
9 |
+
bread_pudding
|
10 |
+
breakfast_burrito
|
11 |
+
bruschetta
|
12 |
+
caesar_salad
|
13 |
+
cannoli
|
14 |
+
caprese_salad
|
15 |
+
carrot_cake
|
16 |
+
ceviche
|
17 |
+
cheese_plate
|
18 |
+
cheesecake
|
19 |
+
chicken_curry
|
20 |
+
chicken_quesadilla
|
21 |
+
chicken_wings
|
22 |
+
chocolate_cake
|
23 |
+
chocolate_mousse
|
24 |
+
churros
|
25 |
+
clam_chowder
|
26 |
+
club_sandwich
|
27 |
+
crab_cakes
|
28 |
+
creme_brulee
|
29 |
+
croque_madame
|
30 |
+
cup_cakes
|
31 |
+
deviled_eggs
|
32 |
+
donuts
|
33 |
+
dumplings
|
34 |
+
edamame
|
35 |
+
eggs_benedict
|
36 |
+
escargots
|
37 |
+
falafel
|
38 |
+
filet_mignon
|
39 |
+
fish_and_chips
|
40 |
+
foie_gras
|
41 |
+
french_fries
|
42 |
+
french_onion_soup
|
43 |
+
french_toast
|
44 |
+
fried_calamari
|
45 |
+
fried_rice
|
46 |
+
frozen_yogurt
|
47 |
+
garlic_bread
|
48 |
+
gnocchi
|
49 |
+
greek_salad
|
50 |
+
grilled_cheese_sandwich
|
51 |
+
grilled_salmon
|
52 |
+
guacamole
|
53 |
+
gyoza
|
54 |
+
hamburger
|
55 |
+
hot_and_sour_soup
|
56 |
+
hot_dog
|
57 |
+
huevos_rancheros
|
58 |
+
hummus
|
59 |
+
ice_cream
|
60 |
+
lasagna
|
61 |
+
lobster_bisque
|
62 |
+
lobster_roll_sandwich
|
63 |
+
macaroni_and_cheese
|
64 |
+
macarons
|
65 |
+
miso_soup
|
66 |
+
mussels
|
67 |
+
nachos
|
68 |
+
omelette
|
69 |
+
onion_rings
|
70 |
+
oysters
|
71 |
+
pad_thai
|
72 |
+
paella
|
73 |
+
pancakes
|
74 |
+
panna_cotta
|
75 |
+
peking_duck
|
76 |
+
pho
|
77 |
+
pizza
|
78 |
+
pork_chop
|
79 |
+
poutine
|
80 |
+
prime_rib
|
81 |
+
pulled_pork_sandwich
|
82 |
+
ramen
|
83 |
+
ravioli
|
84 |
+
red_velvet_cake
|
85 |
+
risotto
|
86 |
+
samosa
|
87 |
+
sashimi
|
88 |
+
scallops
|
89 |
+
seaweed_salad
|
90 |
+
shrimp_and_grits
|
91 |
+
spaghetti_bolognese
|
92 |
+
spaghetti_carbonara
|
93 |
+
spring_rolls
|
94 |
+
steak
|
95 |
+
strawberry_shortcake
|
96 |
+
sushi
|
97 |
+
tacos
|
98 |
+
takoyaki
|
99 |
+
tiramisu
|
100 |
+
tuna_tartare
|
101 |
+
waffles
|
effnetb2_20percent_101classes.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0556fcf79356e837c2c4bb9531c9afb83154098d9fb8f5bcebd6151ede705f9
|
3 |
+
size 31837882
|
examples/example1.jpg
ADDED
examples/example2.jpg
ADDED
examples/example3.jpg
ADDED
model.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision
|
3 |
+
def create_effnet_b2_model(num_classes=101):
|
4 |
+
"""
|
5 |
+
Args: num_classes is total number of classes
|
6 |
+
|
7 |
+
returns: model and its corresponding model_specific transform
|
8 |
+
"""
|
9 |
+
weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
|
10 |
+
transform = torchvision.models.EfficientNet_B2_Weights.DEFAULT.transforms()
|
11 |
+
model = torchvision.models.efficientnet_b2(weights=weights)
|
12 |
+
|
13 |
+
# freeze the parameters from training
|
14 |
+
for param in model.parameters():
|
15 |
+
param.requires_grad = False
|
16 |
+
|
17 |
+
# modifying the classifier layer
|
18 |
+
model.classifier = torch.nn.Sequential(
|
19 |
+
torch.nn.Dropout(p=0.3,inplace=True),
|
20 |
+
torch.nn.Linear(in_features=1408,out_features=num_classes)
|
21 |
+
)
|
22 |
+
|
23 |
+
return model,transform
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch==1.12.0
|
2 |
+
torchvision==0.13.0
|
3 |
+
gradio==3.1.4
|