tmgztxi / myapp.py
Geek7's picture
Update myapp.py
d3cdca9 verified
from flask import Flask, request, jsonify, send_file
from flask_cors import CORS # Import CORS
from transformers import CLIPImageProcessor
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
import torch
import io
myapp = Flask(__name__) # Changed from app to myapp
CORS(myapp) # Enable CORS for all routes
# Load the pre-trained models
repo_id = "stabilityai/stable-diffusion-2"
pipe = DiffusionPipeline.from_pretrained(
repo_id,
safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker"),
feature_extractor=CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32"),
torch_dtype=torch.float32 # Use float32 for CPU
)
# Set the scheduler
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
# Move pipeline to CPU
pipe = pipe.to("cpu")
@myapp.route('/')
def home():
return "Stable Diffusion API is running!" # Basic message
@myapp.route('/generate', methods=['POST'])
def generate():
prompt = request.form.get('prompt')
if not prompt:
return jsonify({"error": "No prompt provided!"}), 400
# Generate the image
results = pipe(prompt, guidance_scale=9, num_inference_steps=25, num_images_per_prompt=1)
# Check for NSFW content
if not results.nsfw_content_detected[0]:
img_io = io.BytesIO()
results.images[0].save(img_io, format='PNG')
img_io.seek(0) # Go to the beginning of the BytesIO buffer
return send_file(img_io, mimetype='image/png', as_attachment=True, attachment_filename='generated_image.png')
else:
return jsonify({"error": "NSFW content detected!"}), 400
if __name__ == '__main__':
myapp.run(host="0.0.0.0", port=8080, debug=True) # Changed app to myapp