Geek7 commited on
Commit
0796b9d
1 Parent(s): 8be12ab

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -74
app.py CHANGED
@@ -1,77 +1,11 @@
1
- from flask import Flask, request, jsonify, send_file
2
- from flask_cors import CORS
3
- import asyncio
4
- import tempfile
5
- import os
6
- from threading import RLock
7
- from huggingface_hub import InferenceClient
8
- from all_models import models # Importing models from all_models
9
-
10
- app = Flask(__name__)
11
- CORS(app) # Enable CORS for all routes
12
-
13
- lock = RLock()
14
- HF_TOKEN = os.environ.get("HF_TOKEN") # Hugging Face token
15
-
16
- inference_timeout = 600 # Set timeout for inference
17
-
18
- # Function to dynamically load models from the "models" list
19
- def get_model_from_name(model_name):
20
- return model_name if model_name in models else None
21
-
22
- # Asynchronous function to perform inference
23
- async def infer(client, prompt, seed=1, timeout=inference_timeout, model="prompthero/openjourney-v4"):
24
- task = asyncio.create_task(
25
- asyncio.to_thread(client.text_to_image, prompt=prompt, seed=seed, model=model)
26
- )
27
- await asyncio.sleep(0)
28
- try:
29
- result = await asyncio.wait_for(task, timeout=timeout)
30
- except (Exception, asyncio.TimeoutError) as e:
31
- print(e)
32
- print(f"Task timed out for model: {model}")
33
- if not task.done():
34
- task.cancel()
35
- result = None
36
-
37
- if task.done() and result is not None:
38
- with lock:
39
- temp_image = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
40
- with open(temp_image.name, "wb") as f:
41
- f.write(result) # Save the result image as a temporary file
42
- return temp_image.name # Return the path to the saved image
43
- return None
44
-
45
- # Flask route for the API endpoint
46
- @app.route('/generate_api', methods=['POST'])
47
- def generate_api():
48
- data = request.get_json()
49
 
50
- # Extract required fields from the request
51
- prompt = data.get('prompt', '')
52
- seed = data.get('seed', 1)
53
- model_name = data.get('model', 'prompthero/openjourney-v4') # Default to "prompthero/openjourney-v4" if not provided
54
-
55
- if not prompt:
56
- return jsonify({"error": "Prompt is required"}), 400
57
-
58
- # Get the model from all_models
59
- model = get_model_from_name(model_name)
60
- if not model:
61
- return jsonify({"error": f"Model '{model_name}' not found in available models"}), 400
62
-
63
- try:
64
- # Create a generic InferenceClient for the model
65
- client = InferenceClient(token=HF_TOKEN) # Pass Hugging Face token if needed
66
-
67
- # Call the async inference function
68
- result_path = asyncio.run(infer(client, prompt, seed, model=model))
69
- if result_path:
70
- return send_file(result_path, mimetype='image/png') # Send back the generated image file
71
- else:
72
- return jsonify({"error": "Failed to generate image"}), 500
73
- except Exception as e:
74
- return jsonify({"error": str(e)}), 500
75
 
76
  if __name__ == "__main__":
77
- app.run(host='0.0.0.0', port=7860) # Run directly if needed for testing
 
 
 
 
 
1
+ # app.py
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
+ import os
4
+ import subprocess
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
  if __name__ == "__main__":
7
+ # Run awake.py in the background
8
+ subprocess.Popen(["python", "wk.py"]) # Start awake.py
9
+
10
+ # Run the Flask app using Gunicorn
11
+ os.system("gunicorn -w 4 -b 0.0.0.0:7860 myapp:myapp") # 4 worker processes