mdztxi2 / myapp.py
Geek7's picture
Update myapp.py
c23f4d4 verified
raw
history blame
2.45 kB
from flask import Flask, request, jsonify, send_file
from flask_cors import CORS
import os
from huggingface_hub import InferenceClient
from io import BytesIO # For converting image to bytes
from PIL import Image # Import Pillow for image processing
# Initialize the Flask app
myapp = Flask(__name__)
CORS(myapp) # Enable CORS for all routes
# Initialize the InferenceClient with your Hugging Face token
HF_TOKEN = os.environ.get("HF_TOKEN") # Ensure to set your Hugging Face token in the environment
client = InferenceClient(token=HF_TOKEN)
@myapp.route('/')
def home():
return "Welcome to the Image Background Remover!"
# Function to generate an image from a prompt
def generate_image(prompt, seed=1, model="prompthero/openjourney-v4"):
try:
# Generate the image using Hugging Face's inference API with the given model
result_image = client.text_to_image(prompt=prompt, seed=seed, model=model)
return result_image
except Exception as e:
print(f"Error generating image: {str(e)}")
return None
# Flask route for the API endpoint
@myapp.route('/generate_image', methods=['POST'])
def generate_api():
data = request.get_json()
# Extract required fields from the request
prompt = data.get('prompt', '')
seed = data.get('seed', 1)
model_name = data.get('model', 'prompthero/openjourney-v4') # Default model
if not prompt:
return jsonify({"error": "Prompt is required"}), 400
try:
# Call the generate_image function with the custom model name
image = generate_image(prompt, seed, model_name)
if image:
# Save the image to a BytesIO object to send as response
image_bytes = BytesIO()
image.save(image_bytes, format='PNG')
image_bytes.seek(0) # Go to the start of the byte stream
# Send the generated image as a response with a download option
return send_file(image_bytes, mimetype='image/png', as_attachment=True, download_name='generated_image.png')
else:
return jsonify({"error": "Failed to generate image"}), 500
except Exception as e:
print(f"Error in generate_api: {str(e)}") # Log the error
return jsonify({"error": str(e)}), 500
# Add this block to make sure your app runs when called
if __name__ == "__main__":
myapp.run(host='0.0.0.0', port=7860) # Run directly if needed for testing