File size: 1,802 Bytes
1ff4547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5c8a42
1ff4547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import gradio as gr
from random import randint
from all_models import models
from externalmod import gr_Interface_load
import asyncio
import os
from threading import RLock

lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN")

def load_fn(models):
    global models_load
    models_load = {}
    
    for model in models:
        if model not in models_load.keys():
            try:
                m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
            except Exception as error:
                print(error)
                m = gr.Interface(lambda: None, ['text'], ['image'])
            models_load.update({model: m})

load_fn(models)

num_models = 6
MAX_SEED = 3999999999
default_models = models[:num_models]
inference_timeout = 600

async def infer(model_str, prompt, seed=1, timeout=inference_timeout):
    kwargs = {"seed": seed}
    task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, prompt=prompt, **kwargs, token=HF_TOKEN))
    await asyncio.sleep(0)
    try:
        result = await asyncio.wait_for(task, timeout=timeout)
    except (Exception, asyncio.TimeoutError) as e:
        print(e)
        print(f"Task timed out: {model_str}")
        if not task.done(): 
            task.cancel()
        result = None
    if task.done() and result is not None:
        with lock:
            png_path = "image.png"
            result.save(png_path)
        return png_path
    return None

# Expose Gradio API
def generate_api(model_str, prompt, seed=1):
    result = asyncio.run(infer(model_str, prompt, seed))
    if result:
        return result  # Path to generated image
    return None

# Launch Gradio API without frontend
iface = gr.Interface(fn=generate_api, inputs=["text", "text", "number"], outputs="file")
iface.launch(show_api=True, share=True)