Garfy commited on
Commit
fb60255
·
1 Parent(s): 970af3a

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -45
app.py DELETED
@@ -1,45 +0,0 @@
1
- # import os
2
- # os.system('pip install git+https://github.com/huggingface/transformers.git --upgrade')
3
-
4
- import gradio as gr
5
- from transformers import TrOCRProcessor, VisionEncoderDecoderModel
6
- import requests
7
- from PIL import Image
8
-
9
- processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-printed")
10
- model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-printed")
11
- model.config.eos_token_id = 2
12
-
13
- # load image examples
14
- urls = ['https://layoutlm.blob.core.windows.net/trocr/dataset/SROIE2019Task2Crop/train/X00016469612_1.jpg', 'https://layoutlm.blob.core.windows.net/trocr/dataset/SROIE2019Task2Crop/train/X51005255805_7.jpg', 'https://layoutlm.blob.core.windows.net/trocr/dataset/SROIE2019Task2Crop/train/X51005745214_6.jpg']
15
- for idx, url in enumerate(urls):
16
- image = Image.open(requests.get(url, stream=True).raw)
17
- image.save(f"image_{idx}.png")
18
-
19
- def process_image(image):
20
- # prepare image
21
- pixel_values = processor(image, return_tensors="pt").pixel_values
22
-
23
- # generate (no beam search)
24
- generated_ids = model.generate(pixel_values)
25
-
26
- # decode
27
- generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
28
-
29
- return generated_text
30
-
31
- title = "Interactive demo: TrOCR"
32
- description = "Demo for Microsoft's TrOCR, an encoder-decoder model consisting of an image Transformer encoder and a text Transformer decoder for state-of-the-art optical character recognition (OCR) on single-text line images. This particular model is fine-tuned on SROIE Task 2, a dataset of annotated printed images. To use it, simply upload a (single-text line) image or use one of the example images below and click 'submit'. Results will show up in a few seconds."
33
- article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.10282'>TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models</a> | <a href='https://github.com/microsoft/unilm/tree/master/trocr'>Github Repo</a></p>"
34
- examples =[["image_0.png"], ["image_1.png"], ["image_2.png"]]
35
-
36
- #css = """.output_image, .input_image {height: 600px !important}"""
37
-
38
- iface = gr.Interface(fn=process_image,
39
- inputs=gr.inputs.Image(type="pil"),
40
- outputs=gr.outputs.Textbox(),
41
- title=title,
42
- description=description,
43
- article=article,
44
- examples=examples)
45
- iface.launch(debug=True)