|
|
|
import os
|
|
from dotenv import load_dotenv
|
|
load_dotenv()
|
|
import gradio as gr
|
|
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
|
|
from llama_index.embeddings.mixedbreadai import MixedbreadAIEmbedding
|
|
from llama_index.llms.groq import Groq
|
|
from llama_parse import LlamaParse
|
|
|
|
|
|
llama_cloud_key = os.environ.get("LLAMA_CLOUD_API_KEY")
|
|
groq_key = os.environ.get("GROQ_API_KEY")
|
|
mxbai_key = os.environ.get("MXBAI_API_KEY")
|
|
if not (llama_cloud_key and groq_key and mxbai_key):
|
|
raise ValueError(
|
|
"API Keys not found! Ensure they are passed to the Docker container."
|
|
)
|
|
|
|
|
|
llm_model_name = "llama-3.1-70b-versatile"
|
|
embed_model_name = "mixedbread-ai/mxbai-embed-large-v1"
|
|
|
|
|
|
parser = LlamaParse(api_key=llama_cloud_key, result_type="markdown")
|
|
|
|
|
|
file_extractor = {
|
|
".pdf": parser,
|
|
".docx": parser,
|
|
".doc": parser,
|
|
".txt": parser,
|
|
".csv": parser,
|
|
".xlsx": parser,
|
|
".pptx": parser,
|
|
".html": parser,
|
|
".jpg": parser,
|
|
".jpeg": parser,
|
|
".png": parser,
|
|
".webp": parser,
|
|
".svg": parser,
|
|
}
|
|
|
|
|
|
embed_model = MixedbreadAIEmbedding(api_key=mxbai_key, model_name=embed_model_name)
|
|
|
|
|
|
llm = Groq(model="llama-3.1-70b-versatile", api_key=groq_key)
|
|
|
|
|
|
|
|
def load_files(file_path: str):
|
|
global vector_index
|
|
if not file_path:
|
|
return "No file path provided. Please upload a file."
|
|
|
|
valid_extensions = ', '.join(file_extractor.keys())
|
|
if not any(file_path.endswith(ext) for ext in file_extractor):
|
|
return f"The parser can only parse the following file types: {valid_extensions}"
|
|
|
|
document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data()
|
|
vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model)
|
|
print(f"Parsing completed for: {file_path}")
|
|
filename = os.path.basename(file_path)
|
|
return f"Ready to provide responses based on: {filename}"
|
|
|
|
|
|
|
|
def respond(message, history):
|
|
try:
|
|
|
|
query_engine = vector_index.as_query_engine(streaming=True, llm=llm)
|
|
streaming_response = query_engine.query(message)
|
|
partial_text = ""
|
|
for new_text in streaming_response.response_gen:
|
|
partial_text += new_text
|
|
|
|
yield partial_text
|
|
except (AttributeError, NameError):
|
|
print("An error occurred while processing your request.")
|
|
yield "Please upload the file to begin chat."
|
|
|
|
|
|
|
|
def clear_state():
|
|
global vector_index
|
|
vector_index = None
|
|
return [None, None, None]
|
|
|
|
|
|
with gr.Blocks(
|
|
theme=gr.themes.Default(
|
|
primary_hue="orange",
|
|
secondary_hue="blue",
|
|
font=[gr.themes.GoogleFont("Poppins")],
|
|
),
|
|
css="footer {visibility: hidden}",
|
|
) as demo:
|
|
gr.Markdown("# chat with Document📃")
|
|
with gr.Row():
|
|
with gr.Column(scale=1):
|
|
file_input = gr.File(
|
|
file_count="single", type="filepath", label="Upload Document"
|
|
)
|
|
with gr.Row():
|
|
btn = gr.Button("Submit", variant="primary")
|
|
clear = gr.Button("Clear")
|
|
output = gr.Textbox(label="Status")
|
|
with gr.Column(scale=3):
|
|
chatbot = gr.ChatInterface(
|
|
fn=respond,
|
|
chatbot=gr.Chatbot(height=300),
|
|
theme="soft",
|
|
show_progress="full",
|
|
textbox=gr.Textbox(
|
|
placeholder="Ask questions about the uploaded document!",
|
|
container=False,
|
|
),
|
|
)
|
|
|
|
|
|
btn.click(fn=load_files, inputs=file_input, outputs=output)
|
|
clear.click(
|
|
fn=clear_state,
|
|
outputs=[file_input, output],
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
demo.launch() |