Spaces:
Sleeping
Sleeping
File size: 1,074 Bytes
54ef3d0 03e6add 369ae33 6564a3a c21a752 6564a3a dba19bd c21a752 bf4a295 c21a752 bf4a295 c21a752 6564a3a c21a752 bf4a295 c21a752 bf4a295 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import os
import gradio as gr
from transformers import pipeline
from transformers import DetrForSegmentation, DetrConfig
# Initialize the configuration for DetrForObjectDetection
config = DetrConfig.from_pretrained("facebook/detr-resnet-50")
# Create the model for object detection using the specified configuration
model = DetrForSegmentation.from_pretrained("facebook/detr-resnet-50", config=config)
# Updated function call
results = processed_image(model, image, size={'longest_edge': 800})
def get_pipeline_prediction(pil_image):
# first get the pipeline output given the pil image
pipeline_output = od_pipe(pil_image)
# Then Process the image using the pipeline output
processed_image = render_results_in_image(pil_image,
pipeline_output)
return processed_image
demo = gr.Interface(
fn=get_pipeline_prediction,
inputs=gr.Image(label="Input image",
type="pil"),
outputs=gr.Image(label="Output image with predicted instances",
type="pil")
)
demo.launch |