Spaces:
Runtime error
Runtime error
File size: 1,056 Bytes
bb74ac5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import gradio as gr
from transformers import pipeline
model_id = "GV05/distilbert-base-uncased-finetuned-emotion"
classifier = pipeline("text-classification", model=model_id)
label_to_emotion = {
'LABEL_0': 'sadness',
'LABEL_1': 'joy',
'LABEL_2': 'love',
'LABEL_3': 'anger',
'LABEL_4': 'fear',
'LABEL_5': 'surprise',
}
def classify_emotion(text):
preds = classifier(text, return_all_scores=True)
res = {}
for x in preds[0]:
res[label_to_emotion[x['label']]] = x['score']
return res
image = gr.Textbox()
label = gr.Label()
examples = ["you are not too sensitive. you are not overreacting",
"Thinking of you keeps me awake. Dreaming of you keeps me asleep. Being with you keeps me alive."]
title = "Emotion Detector"
description = "This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset"
intf = gr.Interface(fn=classify_emotion, inputs=image, outputs=label, examples=examples, title=title,
description=description)
intf.launch(inline=False)
|