GV05's picture
Update app.py
e20349a
raw
history blame
2.42 kB
import gradio as gr
import torch
from transformers import logging
import random
from PIL import Image
from Utils import MingleModel
logging.set_verbosity_error()
def get_concat_h(images):
widths, heights = zip(*(i.size for i in images))
total_width = sum(widths)
max_height = max(heights)
dst = Image.new('RGB', (total_width, max_height))
x_offset = 0
for im in images:
dst.paste(im, (x_offset,0))
x_offset += im.size[0]
return dst
mingle_model = MingleModel()
def mingle_prompts(first_prompt, second_prompt):
imgs = []
text_input1 = mingle_model.do_tokenizer(first_prompt)
text_input2 = mingle_model.do_tokenizer(second_prompt)
with torch.no_grad():
text_embeddings1 = mingle_model.get_text_encoder(text_input1)
text_embeddings2 = mingle_model.get_text_encoder(text_input2)
rand_generator = random.randint(1, 2048)
# Mix them together
# mix_factors = [0.1, 0.3, 0.5, 0.7, 0.9]
mix_factors = [0.5]
for mix_factor in mix_factors:
mixed_embeddings = (text_embeddings1 * mix_factor + text_embeddings2 * (1 - mix_factor))
# Generate!
steps = 20
guidence_scale = 8.0
img = mingle_model.generate_with_embs(mixed_embeddings, rand_generator, num_inference_steps=steps,
guidance_scale=guidence_scale)
imgs.append(img)
return get_concat_h(imgs)
with gr.Blocks() as demo:
gr.Markdown(
'''
<p style="text-align: center;">create a 'chimera' by averaging the embeddings of two different prompts!!</p>
''')
gr.Image('batman_venum.png', shape=(1024, 205))
first_prompt = gr.Textbox(label="first_prompt")
second_prompt = gr.Textbox(label="second_prompt")
greet_btn = gr.Button("Submit")
gr.Markdown("## Text Examples")
gr.Examples([['batman, dynamic lighting, photorealistic fantasy concept art, trending on art station, stunning visuals, terrifying, creative, cinematic',
'venom, dynamic lighting, photorealistic fantasy concept art, trending on art station, stunning visuals, terrifying, creative, cinematic'],
['A mouse', 'A leopard']], [first_prompt, second_prompt])
gr.Markdown("# Output Results")
output = gr.Image(shape=(512,512))
greet_btn.click(fn=mingle_prompts, inputs=[first_prompt, second_prompt], outputs=[output])
demo.launch()