GV05's picture
Update Utils.py
c503dcc
raw
history blame
4.43 kB
from diffusers import AutoencoderKL, UNet2DConditionModel, LMSDiscreteScheduler
from transformers import CLIPTextModel, CLIPTokenizer
from tqdm.auto import tqdm
from PIL import Image
import torch
class MingleModel:
def __init__(self):
# Set device
self.torch_device = "cuda" if torch.cuda.is_available() else "cpu"
# Load the autoencoder model which will be used to decode the latents into image space.
use_auth_token = "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"
self.vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae",
use_auth_token=use_auth_token).to(self.torch_device)
# Load the tokenizer and text encoder to tokenize and encode the text.
self.tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", use_auth_token=use_auth_token)
self.text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", use_auth_token=use_auth_token).to(self.torch_device)
# # The UNet model for generating the latents.
self.unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet",use_auth_token=use_auth_token).to(self.torch_device)
# The noise scheduler
self.scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
num_train_timesteps=1000)
def do_tokenizer(self, prompt):
return self.tokenizer([prompt], padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True,
return_tensors="pt")
def get_text_encoder(self, text_input):
return self.text_encoder(text_input.input_ids.to(self.torch_device))[0]
def latents_to_pil(self, latents):
# bath of latents -> list of images
latents = (1 / 0.18215) * latents
with torch.no_grad():
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def generate_with_embs(self, text_embeddings, generator_int=32, num_inference_steps=30, guidance_scale=7.5):
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
num_inference_steps = num_inference_steps # Number of denoising steps
guidance_scale = guidance_scale # Scale for classifier-free guidance
generator = torch.manual_seed(generator_int) # Seed generator to create the inital latent noise
batch_size = 1
max_length = 77
uncond_input = self.tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
with torch.no_grad():
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.torch_device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Prep Scheduler
self.scheduler.set_timesteps(num_inference_steps)
# Prep latents
latents = torch.randn((batch_size, self.unet.in_channels, height // 8, width // 8), generator=generator)
latents = latents.to(self.torch_device)
latents = latents * self.scheduler.init_noise_sigma
# Loop
for i, t in tqdm(enumerate(self.scheduler.timesteps)):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
sigma = self.scheduler.sigmas[i]
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
with torch.no_grad():
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
return self.latents_to_pil(latents)[0]