GV05 commited on
Commit
45ef83f
1 Parent(s): 67bdd80

gradio app

Browse files
Files changed (1) hide show
  1. app.py +20 -1
app.py CHANGED
@@ -1,7 +1,26 @@
1
  import gradio as gr
 
 
 
2
 
3
  def greet(name):
4
  return "Hello " + name + "!!"
5
 
6
  iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from fastai.vision.all import *
3
+ """
4
+ Hello world gradio
5
 
6
  def greet(name):
7
  return "Hello " + name + "!!"
8
 
9
  iface = gr.Interface(fn=greet, inputs="text", outputs="text")
10
+ iface.launch()
11
+ """
12
+
13
+ learn = load_learner('pet_model.pkl')
14
+
15
+ categories = ('Abyssinian', 'Bengal', 'Birman', 'Bombay', 'British_Shorthair', 'Egyptian_Mau', 'Maine_Coon', 'Persian', 'Ragdoll', 'Russian_Blue', 'Siamese', 'Sphynx', 'american_bulldog', 'american_pit_bull_terrier', 'basset_hound', 'beagle', 'boxer', 'chihuahua', 'english_cocker_spaniel', 'english_setter', 'german_shorthaired', 'great_pyrenees', 'havanese', 'japanese_chin', 'keeshond', 'leonberger', 'miniature_pinscher', 'newfoundland', 'pomeranian', 'pug', 'saint_bernard', 'samoyed', 'scottish_terrier', 'shiba_inu', 'staffordshire_bull_terrier', 'wheaten_terrier', 'yorkshire_terrier')
16
+
17
+ def classify_image(img):
18
+ _ ,_ ,probs = learn.predict(img)
19
+ return dict(zip(categories, map(float, probs)))
20
+
21
+ image = gr.inputs.Image(shape=(192,192))
22
+ label = gr.outputs.Label()
23
+ examples = ['bengal.jpg', 'pug.jpg']
24
+
25
+ intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
26
+ intf.launch(inline=False)