Spaces:
Runtime error
Runtime error
import gradio as gr | |
from models.blip_vqa import blip_vqa | |
import torch | |
from torchvision import transforms | |
from torchvision.transforms.functional import InterpolationMode | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
image_size = 480 | |
transform = transforms.Compose([ | |
transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC), | |
transforms.ToTensor(), | |
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) | |
]) | |
model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' | |
model = blip_vqa(pretrained=model_url, image_size=image_size, vit='base') | |
model.eval() | |
model = model.to(device) | |
def pool_alarm(raw_image): | |
question = 'there is someone in the pool?' | |
image = transform(raw_image).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
answer = model(image, question, train=False, inference='generate') | |
return 'answer: ' + answer[0] | |
input = gr.inputs.Image(type='pil') | |
output = gr.outputs.Textbox() | |
examples = ['alarm.jpeg', 'alarm1.jpeg', 'walk.jpeg'] | |
title = "use blip" | |
description = "" | |
intf = gr.Interface(fn=pool_alarm, inputs=input, outputs=output, examples=examples).launch() |