Spaces:
Runtime error
Runtime error
import logging | |
import pathlib | |
import gradio as gr | |
import pandas as pd | |
from gt4sd.algorithms.generation.pgt import ( | |
PGT, | |
PGTCoherenceChecker, | |
PGTEditor, | |
PGTGenerator, | |
) | |
from gt4sd.algorithms.registry import ApplicationsRegistry | |
logger = logging.getLogger(__name__) | |
logger.addHandler(logging.NullHandler()) | |
MODEL_FN = { | |
"PGTGenerator": PGTGenerator, | |
"PGTEditor": PGTEditor, | |
"PGTCoherenceChecker": PGTCoherenceChecker, | |
} | |
def run_inference( | |
model_type: str, | |
generator_task: str, | |
editor_task: str, | |
checker_task: str, | |
prompt: str, | |
second_prompt: str, | |
length: int, | |
k: int, | |
p: float, | |
): | |
kwargs = {"max_length": length, "top_k": k, "top_p": p} | |
if model_type == "PGTGenerator": | |
config = PGTGenerator(task=generator_task, input_text=prompt, **kwargs) | |
elif model_type == "PGTEditor": | |
config = PGTEditor(input_type=editor_task, input_text=prompt, **kwargs) | |
elif model_type == "PGTCoherenceChecker": | |
config = PGTCoherenceChecker( | |
coherence_type=checker_task, input_a=prompt, input_b=second_prompt, **kwargs | |
) | |
model = PGT(config) | |
text = list(model.sample(1))[0] | |
return text | |
if __name__ == "__main__": | |
# Preparation (retrieve all available algorithms) | |
all_algos = ApplicationsRegistry.list_available() | |
algos = [ | |
x["algorithm_application"] | |
for x in list(filter(lambda x: "PGT" in x["algorithm_name"], all_algos)) | |
] | |
# Load metadata | |
metadata_root = pathlib.Path(__file__).parent.joinpath("model_cards") | |
examples = pd.read_csv( | |
metadata_root.joinpath("examples.csv"), sep="|", header=None | |
).fillna("") | |
print("Examples: ", examples.values.tolist()) | |
with open(metadata_root.joinpath("article.md"), "r") as f: | |
article = f.read() | |
with open(metadata_root.joinpath("description.md"), "r") as f: | |
description = f.read() | |
gen_tasks = [ | |
"title-to-abstract", | |
"abstract-to-title", | |
"abstract-to-claim", | |
"claim-to-abstract", | |
] | |
demo = gr.Interface( | |
fn=run_inference, | |
title="Patent Generative Transformer", | |
inputs=[ | |
gr.Dropdown(algos, label="Model type", value="PGTGenerator"), | |
gr.Dropdown(gen_tasks, label="Generator task", value="title-to-abstract"), | |
gr.Dropdown(["abstract", "claim"], label="Editor task", value="abstract"), | |
gr.Dropdown( | |
["title-abstract", "title-claim", "abstract-claim"], | |
label="Checker task", | |
value="title-abstract", | |
), | |
gr.Textbox( | |
label="Primary Text prompt", | |
placeholder="Artificial intelligence and machine learning infrastructure", | |
lines=5, | |
), | |
gr.Textbox( | |
label="Secondary text prompt (only coherence checker)", | |
placeholder="", | |
lines=1, | |
), | |
gr.Slider( | |
minimum=5, maximum=1024, value=512, label="Maximal length", step=1 | |
), | |
gr.Slider(minimum=2, maximum=500, value=50, label="Top-k", step=1), | |
gr.Slider(minimum=0.5, maximum=1.0, value=0.95, label="Top-p"), | |
], | |
outputs=gr.Textbox(label="Output"), | |
article=article, | |
description=description, | |
examples=examples.values.tolist(), | |
) | |
demo.launch(debug=True, show_error=True) | |