Spaces:
Runtime error
Runtime error
import logging | |
import pathlib | |
import gradio as gr | |
import pandas as pd | |
from gt4sd.algorithms.generation.hugging_face import ( | |
HuggingFaceSeq2SeqGenerator, | |
HuggingFaceGenerationAlgorithm, | |
) | |
from transformers import AutoTokenizer | |
logger = logging.getLogger(__name__) | |
logger.addHandler(logging.NullHandler()) | |
task2prefix = { | |
"forward": "Predict the product of the following reaction: ", | |
"retrosynthesis": "Predict the reaction that produces the following product: ", | |
"paragraph to actions": "Which actions are described in the following paragraph: ", | |
"molecular captioning": "Caption the following SMILES: ", | |
"text-conditional de novo generation": "Write in SMILES the described molecule: ", | |
} | |
def run_inference( | |
model_name_or_path: str, | |
task: str, | |
prompt: str, | |
num_beams: int, | |
): | |
instruction = task2prefix[task] | |
config = HuggingFaceSeq2SeqGenerator( | |
algorithm_version=model_name_or_path, | |
prefix=instruction, | |
prompt=prompt, | |
num_beams=num_beams, | |
) | |
model = HuggingFaceGenerationAlgorithm(config) | |
tokenizer = AutoTokenizer.from_pretrained("t5-small") | |
text = list(model.sample(1))[0] | |
text = text.replace(instruction + prompt, "") | |
text = text.split(tokenizer.eos_token)[0] | |
text = text.replace(tokenizer.pad_token, "") | |
text = text.strip() | |
return text | |
if __name__ == "__main__": | |
models = [ | |
"text-chem-t5-small-standard", | |
"text-chem-t5-small-augm", | |
"text-chem-t5-base-standard", | |
"text-chem-t5-base-augm", | |
] | |
metadata_root = pathlib.Path(__file__).parent.joinpath("model_cards") | |
examples = pd.read_csv(metadata_root.joinpath("examples.csv"), header=None).fillna( | |
"" | |
) | |
print("Examples: ", examples.values.tolist()) | |
with open(metadata_root.joinpath("article.md"), "r") as f: | |
article = f.read() | |
with open(metadata_root.joinpath("description.md"), "r") as f: | |
description = f.read() | |
demo = gr.Interface( | |
fn=run_inference, | |
title="Text-chem-T5 model", | |
inputs=[ | |
gr.Dropdown( | |
models, | |
label="Language model", | |
value="text-chem-t5-base-augm", | |
), | |
gr.Radio( | |
choices=[ | |
"forward", | |
"retrosynthesis", | |
"paragraph to actions", | |
"molecular captioning", | |
"text-conditional de novo generation", | |
], | |
label="Task", | |
value="paragraph to actions", | |
), | |
gr.Textbox( | |
label="Text prompt", | |
placeholder="I'm a stochastic parrot.", | |
lines=1, | |
), | |
gr.Slider(minimum=1, maximum=50, value=10, label="num_beams", step=1), | |
], | |
outputs=gr.Textbox(label="Output"), | |
article=article, | |
description=description, | |
examples=examples.values.tolist(), | |
) | |
demo.launch(debug=True, show_error=True) | |