Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- app.py +1403 -0
- requirements.txt +18 -0
- weights_gae/.gitattributes +1 -0
- weights_gae/gan_efficientunet_full_augment-hist_equal_generator.h5 +3 -0
- weights_yolo/oai_s_best4.pt +3 -0
app.py
ADDED
@@ -0,0 +1,1403 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
3 |
+
|
4 |
+
import gc
|
5 |
+
import cv2
|
6 |
+
import math
|
7 |
+
import time
|
8 |
+
import random
|
9 |
+
import tf_clahe
|
10 |
+
import numpy as np
|
11 |
+
import pandas as pd
|
12 |
+
from tqdm import tqdm
|
13 |
+
from scipy import ndimage
|
14 |
+
from PIL import Image
|
15 |
+
# from keras_cv.utils import conv_utils
|
16 |
+
import streamlit as st
|
17 |
+
import matplotlib.pyplot as plt
|
18 |
+
from matplotlib.colors import Normalize
|
19 |
+
from matplotlib.cm import ScalarMappable
|
20 |
+
|
21 |
+
import matplotlib
|
22 |
+
matplotlib.use('Agg')
|
23 |
+
|
24 |
+
from skimage import exposure
|
25 |
+
from skimage.filters import gaussian
|
26 |
+
from skimage.restoration import denoise_nl_means, estimate_sigma
|
27 |
+
from sklearn.metrics import classification_report, confusion_matrix, ConfusionMatrixDisplay
|
28 |
+
|
29 |
+
|
30 |
+
import tensorflow as tf
|
31 |
+
import tensorflow_addons as tfa
|
32 |
+
from tensorflow.keras.optimizers import Adam
|
33 |
+
from tensorflow.keras.utils import plot_model
|
34 |
+
from tensorflow.keras.models import Sequential, Model
|
35 |
+
from tensorflow.keras.__internal__.layers import BaseRandomLayer
|
36 |
+
|
37 |
+
from tensorflow.keras import layers
|
38 |
+
from tensorflow.keras.layers import (
|
39 |
+
Dense, Flatten, Conv2D, Activation, BatchNormalization,
|
40 |
+
MaxPooling2D, AveragePooling2D, GlobalAveragePooling2D,
|
41 |
+
Dropout, Input, concatenate, add, Conv2DTranspose, Lambda,
|
42 |
+
SpatialDropout2D, Cropping2D, UpSampling2D, LeakyReLU,
|
43 |
+
ZeroPadding2D, Reshape, Concatenate, Multiply, Permute, Add
|
44 |
+
)
|
45 |
+
|
46 |
+
from tensorflow.keras.applications import (
|
47 |
+
InceptionResNetV2, DenseNet201, ResNet152V2, VGG19,
|
48 |
+
EfficientNetV2M, ResNet50V2, Xception, InceptionV3,
|
49 |
+
EfficientNetV2S, EfficientNetV2B3, ResNet50, ConvNeXtBase,
|
50 |
+
RegNetX032
|
51 |
+
)
|
52 |
+
|
53 |
+
st.set_option('deprecation.showPyplotGlobalUse', False)
|
54 |
+
|
55 |
+
import ultralytics
|
56 |
+
ultralytics.checks()
|
57 |
+
from ultralytics import YOLO
|
58 |
+
|
59 |
+
IMAGE_SIZE = 224
|
60 |
+
NUM_CLASSES = 3
|
61 |
+
|
62 |
+
yolo_weight = './weights_yolo/oai_s_best4.pt'
|
63 |
+
seg_model = YOLO(yolo_weight)
|
64 |
+
|
65 |
+
|
66 |
+
def find_boundaries(mask, start, end, top=True, verbose=0):
|
67 |
+
# nếu top = True, tìm đường bao bên trên cùng từ left đến right
|
68 |
+
# nếu top = False, tìm đường bao dưới cùng từ left đến right
|
69 |
+
boundaries = []
|
70 |
+
height, width = mask.shape
|
71 |
+
|
72 |
+
contours, _ = cv2.findContours(255 * mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
73 |
+
|
74 |
+
areas = np.array([cv2.contourArea(cnt) for cnt in contours])
|
75 |
+
contour = contours[areas.argmax()]
|
76 |
+
contour = contour.reshape(-1, 2)
|
77 |
+
org_contour = contour.copy()
|
78 |
+
|
79 |
+
start_idx = ((start - contour) ** 2).sum(axis=-1).argmin()
|
80 |
+
end_idx = ((end - contour) ** 2).sum(axis=-1).argmin()
|
81 |
+
if start_idx <= end_idx:
|
82 |
+
contour = contour[start_idx:end_idx + 1]
|
83 |
+
else:
|
84 |
+
contour = np.concatenate([contour[start_idx:], contour[:end_idx + 1]])
|
85 |
+
|
86 |
+
if top:
|
87 |
+
sorted_indices = np.argsort(contour[:, 1])[::-1]
|
88 |
+
else:
|
89 |
+
sorted_indices = np.argsort(contour[:, 1])
|
90 |
+
contour = contour[sorted_indices]
|
91 |
+
|
92 |
+
unique_indices = sorted(np.unique(contour[:, 0], return_index=True)[1])
|
93 |
+
contour = contour[unique_indices]
|
94 |
+
sorted_indices = np.argsort(contour[:, 0])
|
95 |
+
contour = contour[sorted_indices]
|
96 |
+
if verbose:
|
97 |
+
temp = draw_points(127 * mask.astype(np.uint8), contour, thickness=5)
|
98 |
+
temp = draw_points(temp, [start, end], color=[155, 155], thickness=15)
|
99 |
+
cv2_imshow(temp)
|
100 |
+
|
101 |
+
return np.array(contour), np.array(org_contour)
|
102 |
+
|
103 |
+
|
104 |
+
def get_contours(mask, verbose=0):
|
105 |
+
limit_points = detect_limit_points(mask, verbose=verbose)
|
106 |
+
upper_contour, full_upper = find_boundaries(mask == 1, limit_points[0], limit_points[1], top=False, verbose=verbose)
|
107 |
+
lower_contour, full_lower = find_boundaries(mask == 2, limit_points[3], limit_points[2], top=True, verbose=verbose)
|
108 |
+
if verbose:
|
109 |
+
temp = draw_points(127 * mask, full_upper, thickness=3, color=(255, 0, 0))
|
110 |
+
temp = draw_points(temp, full_lower, thickness=3)
|
111 |
+
cv2_imshow(temp)
|
112 |
+
cv2.imwrite('full.png', temp)
|
113 |
+
temp = draw_points(temp, limit_points, thickness=7, color=(0, 0, 255))
|
114 |
+
cv2_imshow(temp)
|
115 |
+
cv2.imwrite('limit_points.png', temp)
|
116 |
+
if verbose:
|
117 |
+
temp = draw_points(127 * mask, upper_contour, thickness=3, color=(255, 0, 0))
|
118 |
+
temp = draw_points(temp, lower_contour, thickness=3)
|
119 |
+
cv2_imshow(temp)
|
120 |
+
cv2.imwrite('cropped.png', temp)
|
121 |
+
|
122 |
+
return upper_contour, lower_contour
|
123 |
+
|
124 |
+
|
125 |
+
def cv2_imshow(images):
|
126 |
+
if not isinstance(images, list):
|
127 |
+
images = [images]
|
128 |
+
|
129 |
+
num_images = len(images)
|
130 |
+
|
131 |
+
# Hiển thị ảnh đơn lẻ trực tiếp bằng imshow
|
132 |
+
if num_images == 1:
|
133 |
+
image = images[0]
|
134 |
+
if len(image.shape) == 3 and image.shape[2] == 3:
|
135 |
+
# Ảnh màu (RGB)
|
136 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
137 |
+
plt.imshow(image_rgb)
|
138 |
+
else:
|
139 |
+
# Ảnh xám
|
140 |
+
plt.imshow(image, cmap='gray')
|
141 |
+
|
142 |
+
plt.axis("off")
|
143 |
+
plt.show()
|
144 |
+
else:
|
145 |
+
# Hiển thị nhiều ảnh trên cùng một cột
|
146 |
+
fig, ax = plt.subplots(num_images, 1, figsize=(4, 4 * num_images))
|
147 |
+
|
148 |
+
for i in range(num_images):
|
149 |
+
image = images[i]
|
150 |
+
if len(image.shape) == 3 and image.shape[2] == 3:
|
151 |
+
# Ảnh màu (RGB)
|
152 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
153 |
+
ax[i].imshow(image_rgb)
|
154 |
+
else:
|
155 |
+
# Ảnh xám
|
156 |
+
ax[i].imshow(image, cmap='gray')
|
157 |
+
|
158 |
+
ax[i].axis("off")
|
159 |
+
|
160 |
+
plt.tight_layout()
|
161 |
+
plt.show()
|
162 |
+
|
163 |
+
|
164 |
+
def to_color(image):
|
165 |
+
if len(image.shape) == 3 and image.shape[-1] == 3:
|
166 |
+
return image
|
167 |
+
return cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
|
168 |
+
|
169 |
+
|
170 |
+
def to_gray(image):
|
171 |
+
if len(image.shape) == 3 and image.shape[-1] == 3:
|
172 |
+
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
173 |
+
return image
|
174 |
+
|
175 |
+
|
176 |
+
def apply_clahe(image, clip_limit=2.0, tile_grid_size=(8, 8)):
|
177 |
+
# Convert the image to grayscale if it's a color image
|
178 |
+
if len(image.shape) == 3:
|
179 |
+
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
180 |
+
else:
|
181 |
+
gray_image = image
|
182 |
+
|
183 |
+
# Create a CLAHE object
|
184 |
+
clahe = cv2.createCLAHE(clipLimit=clip_limit, tileGridSize=tile_grid_size)
|
185 |
+
|
186 |
+
# Apply CLAHE to the grayscale image
|
187 |
+
equalized_image = clahe.apply(gray_image)
|
188 |
+
|
189 |
+
return equalized_image
|
190 |
+
|
191 |
+
|
192 |
+
def detect_edge(image, minVal=100, maxVal=200, blur_size=(5, 5)):
|
193 |
+
image_gray = to_gray(image)
|
194 |
+
|
195 |
+
blurred_image = cv2.GaussianBlur(image_gray, blur_size, 0)
|
196 |
+
|
197 |
+
# Phát hiện biên cạnh bằng thuật toán Canny
|
198 |
+
edges = cv2.Canny(blurred_image, minVal, maxVal)
|
199 |
+
|
200 |
+
return edges
|
201 |
+
|
202 |
+
|
203 |
+
def show_mask2(image, mask, label2color={1: (255, 255, 0), 2: (0, 255, 255)}, alpha=0.1):
|
204 |
+
# Tạo hình ảnh mask từ mask và bảng ánh xạ màu
|
205 |
+
image = to_color(image)
|
206 |
+
mask_image = np.zeros_like(image)
|
207 |
+
for label, color in label2color.items():
|
208 |
+
mask_image[mask == label] = color
|
209 |
+
|
210 |
+
mask_image = cv2.addWeighted(image, 1 - alpha, mask_image, alpha, 0)
|
211 |
+
|
212 |
+
# Hiển thị hình ảnh và mask
|
213 |
+
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
|
214 |
+
ax[0].imshow(image)
|
215 |
+
ax[0].set_title("Image")
|
216 |
+
ax[0].axis("off")
|
217 |
+
|
218 |
+
ax[1].imshow(mask_image)
|
219 |
+
ax[1].set_title("Mask")
|
220 |
+
ax[1].axis("off")
|
221 |
+
|
222 |
+
plt.show()
|
223 |
+
|
224 |
+
|
225 |
+
def combine_mask(image, mask, label2color={1: (255, 255, 0), 2: (0, 255, 255)}, alpha=0.1):
|
226 |
+
image = to_color(image)
|
227 |
+
mask_image = np.zeros_like(image)
|
228 |
+
for label, color in label2color.items():
|
229 |
+
mask_image[mask == label] = color
|
230 |
+
|
231 |
+
mask_image = cv2.addWeighted(image, 1 - alpha, mask_image, alpha, 0)
|
232 |
+
return mask_image
|
233 |
+
|
234 |
+
|
235 |
+
## help function
|
236 |
+
import random
|
237 |
+
|
238 |
+
|
239 |
+
def draw_points(image, points, color=None, random_color=False, same=True, thickness=1):
|
240 |
+
if color is None and not random_color:
|
241 |
+
color = (0, 255, 0) # Màu mặc định là xanh lá cây (BGR)
|
242 |
+
if random_color:
|
243 |
+
color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
|
244 |
+
|
245 |
+
image = to_color(image)
|
246 |
+
|
247 |
+
for point in points:
|
248 |
+
if random_color and not same:
|
249 |
+
color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
|
250 |
+
|
251 |
+
x, y = point
|
252 |
+
image = cv2.circle(image, (x, y), thickness, color, -1) # Vẽ điểm lên ảnh
|
253 |
+
return image
|
254 |
+
|
255 |
+
|
256 |
+
def draw_lines(image, pairs, color=None, random_color=False, same=True, thickness=1):
|
257 |
+
image_with_line = to_color(np.copy(image))
|
258 |
+
|
259 |
+
if color is None and not random_color:
|
260 |
+
color = (0, 255, 0) # Màu mặc định là xanh lá cây (BGR)
|
261 |
+
if random_color:
|
262 |
+
color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
|
263 |
+
|
264 |
+
# Vẽ đường thẳng dựa trên danh sách các cặp điểm
|
265 |
+
for pair in pairs:
|
266 |
+
|
267 |
+
if random_color and not same:
|
268 |
+
color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
|
269 |
+
|
270 |
+
start_point = pair[0]
|
271 |
+
end_point = pair[1]
|
272 |
+
image_with_line = cv2.line(image_with_line, start_point, end_point, color, thickness)
|
273 |
+
image_with_line = cv2.circle(image_with_line, start_point, thickness + 1, color, -1)
|
274 |
+
image_with_line = cv2.circle(image_with_line, end_point, thickness + 1, color, -1)
|
275 |
+
|
276 |
+
return image_with_line
|
277 |
+
|
278 |
+
|
279 |
+
def detect_limit_points(mask, verbose=0):
|
280 |
+
# tìm giới hạn hai bên của khớp gối
|
281 |
+
h, w = mask.shape
|
282 |
+
res = []
|
283 |
+
upper_pivot = np.array([0, w // 2]) # r c
|
284 |
+
lower_pivot = np.array([h, w // 2]) # r c
|
285 |
+
|
286 |
+
left_slice = slice(0, w // 2)
|
287 |
+
right_slice = slice(w // 2, None)
|
288 |
+
center_slice = slice(int(0.2 * h), int(0.8 * h))
|
289 |
+
|
290 |
+
left = np.zeros_like(mask)
|
291 |
+
left[center_slice, left_slice] = mask[center_slice, left_slice]
|
292 |
+
|
293 |
+
right = np.zeros_like(mask)
|
294 |
+
right[center_slice, right_slice] = mask[center_slice, right_slice]
|
295 |
+
|
296 |
+
if verbose:
|
297 |
+
cv2_imshow([left, right])
|
298 |
+
|
299 |
+
pivot = np.array([0, w])
|
300 |
+
coords = np.argwhere(left == 1)
|
301 |
+
distances = ((coords - pivot) ** 2).sum(axis=-1)
|
302 |
+
point = coords[distances.argmax()][::-1]
|
303 |
+
res.append(point)
|
304 |
+
|
305 |
+
pivot = np.array([0, 0])
|
306 |
+
coords = np.argwhere(right == 1)
|
307 |
+
distances = ((coords - pivot) ** 2).sum(axis=-1)
|
308 |
+
point = coords[distances.argmax()][::-1]
|
309 |
+
res.append(point)
|
310 |
+
|
311 |
+
pivot = np.array([h, w])
|
312 |
+
coords = np.argwhere(left == 2)
|
313 |
+
distances = ((coords - pivot) ** 2).sum(axis=-1)
|
314 |
+
point = coords[distances.argmax()][::-1]
|
315 |
+
res.append(point)
|
316 |
+
|
317 |
+
pivot = np.array([h, 0])
|
318 |
+
coords = np.argwhere(right == 2)
|
319 |
+
distances = ((coords - pivot) ** 2).sum(axis=-1)
|
320 |
+
point = coords[distances.argmax()][::-1]
|
321 |
+
res.append(point)
|
322 |
+
|
323 |
+
if verbose:
|
324 |
+
cv2_imshow(draw_points(127 * mask, res))
|
325 |
+
|
326 |
+
return res
|
327 |
+
|
328 |
+
|
329 |
+
def center(contour):
|
330 |
+
# array = contour[:,1]
|
331 |
+
# min_value = np.min(array)
|
332 |
+
# argmax_indices = np.argwhere(array == min_value)
|
333 |
+
# if len(argmax_indices) == 1:
|
334 |
+
# i = argmax_indices[0]
|
335 |
+
# else:
|
336 |
+
# i = int(np.median(argmax_indices))
|
337 |
+
# return contour[i]
|
338 |
+
idx = len(contour) // 2
|
339 |
+
return contour[idx]
|
340 |
+
|
341 |
+
|
342 |
+
def pooling_array(array, n, mode='mean'):
|
343 |
+
if mode == 'mean':
|
344 |
+
pool = lambda x: np.mean(x)
|
345 |
+
elif mode == 'min':
|
346 |
+
pool = lambda x: np.min(x)
|
347 |
+
elif mode == 'sum':
|
348 |
+
pool = lambda x: np.sum(x)
|
349 |
+
|
350 |
+
if n == 1:
|
351 |
+
return pool(array)
|
352 |
+
|
353 |
+
array_length = len(array)
|
354 |
+
if array_length < n:
|
355 |
+
return array
|
356 |
+
segment_length = array_length // n
|
357 |
+
remaining_elements = array_length % n
|
358 |
+
|
359 |
+
if remaining_elements == 0:
|
360 |
+
segments = np.split(array, n)
|
361 |
+
else:
|
362 |
+
mid = remaining_elements * (segment_length + 1)
|
363 |
+
segments = np.split(array[:mid], remaining_elements)
|
364 |
+
segments += np.split(array[mid:], n - remaining_elements)
|
365 |
+
|
366 |
+
segments = [pool(segment) for segment in segments]
|
367 |
+
|
368 |
+
return np.array(segments)
|
369 |
+
|
370 |
+
|
371 |
+
def distance(mask, upper_contour, lower_contour, p=0.12, verbose=0):
|
372 |
+
x_center = (center(lower_contour)[0] + center(upper_contour)[0]) // 2
|
373 |
+
length = (lower_contour[-1, 0] - lower_contour[0, 0] + upper_contour[-1, 0] - upper_contour[0, 0]) / 2
|
374 |
+
crop_length = int(p * length)
|
375 |
+
left = x_center - crop_length // 2
|
376 |
+
right = x_center + crop_length // 2
|
377 |
+
x_min = max(lower_contour[0, 0], upper_contour[0, 0])
|
378 |
+
x_max = min(lower_contour[-1, 0], upper_contour[-1, 0])
|
379 |
+
|
380 |
+
left_idx = np.where(lower_contour[:, 0] == left)[0][0]
|
381 |
+
right_idx = np.where(lower_contour[:, 0] == right)[0][0]
|
382 |
+
left_lower_contour = lower_contour[left_idx:]
|
383 |
+
right_lower_contour = lower_contour[:right_idx + 1][::-1]
|
384 |
+
|
385 |
+
left_lower_contour = lower_contour[(lower_contour[:, 0] <= left) & (lower_contour[:, 0] >= x_min)]
|
386 |
+
right_lower_contour = lower_contour[(lower_contour[:, 0] >= right) & (lower_contour[:, 0] <= x_max)][::-1]
|
387 |
+
|
388 |
+
left_upper_contour = upper_contour[(upper_contour[:, 0] <= left) & (upper_contour[:, 0] >= x_min)]
|
389 |
+
right_upper_contour = upper_contour[(upper_contour[:, 0] >= right) & (upper_contour[:, 0] <= x_max)][::-1]
|
390 |
+
|
391 |
+
if verbose == 1:
|
392 |
+
temp = draw_points(mask * 127, left_lower_contour, color=(0, 255, 0), thickness=3)
|
393 |
+
temp = draw_points(temp, right_lower_contour, color=(0, 255, 0), thickness=3)
|
394 |
+
temp = draw_points(temp, left_upper_contour, color=(255, 0, 0), thickness=3)
|
395 |
+
temp = draw_points(temp, right_upper_contour, color=(255, 0, 0), thickness=3)
|
396 |
+
cv2_imshow(temp)
|
397 |
+
cv2.imwrite('center_cropped.png', temp)
|
398 |
+
links = list(zip(left_upper_contour, left_lower_contour)) + list(zip(right_upper_contour, right_lower_contour))
|
399 |
+
|
400 |
+
temp = left_upper_contour, right_upper_contour, left_lower_contour, right_lower_contour
|
401 |
+
|
402 |
+
return left_lower_contour[:, 1] - left_upper_contour[:, 1], right_lower_contour[:, 1] - right_upper_contour[:,
|
403 |
+
1], links, temp
|
404 |
+
|
405 |
+
|
406 |
+
# return None, None, links,temp
|
407 |
+
def getMiddle(mask, contour, verbose=0):
|
408 |
+
X = contour[:, 0].reshape(-1, 1)
|
409 |
+
y = contour[:, 1]
|
410 |
+
reg = LinearRegression().fit(X, y)
|
411 |
+
i_min = np.argmin(y[int(len(y) * 0.2):int(len(y) * 0.8)]) + int(len(y) * 0.2)
|
412 |
+
left = i_min - 1
|
413 |
+
right = i_min + 1
|
414 |
+
left_check = False
|
415 |
+
right_check = False
|
416 |
+
if verbose == 1:
|
417 |
+
cmask = draw_points(mask, contour, thickness=2, color=(255, 0, 0))
|
418 |
+
cmask = draw_points(cmask, np.hstack([X, reg.predict(X).reshape(-1, 1).astype('int')]))
|
419 |
+
cv2_imshow(cmask)
|
420 |
+
plt.show()
|
421 |
+
while True:
|
422 |
+
while not left_check:
|
423 |
+
if y[left] > reg.predict(X[left].reshape(-1, 1)):
|
424 |
+
break
|
425 |
+
left -= 1
|
426 |
+
while not right_check:
|
427 |
+
if y[right] > reg.predict(X[right].reshape(-1, 1)):
|
428 |
+
break
|
429 |
+
right += 1
|
430 |
+
if verbose == 1:
|
431 |
+
cmask = draw_points(cmask, [contour[left]], thickness=10, color=(255, 255, 0))
|
432 |
+
cmask = draw_points(cmask, [contour[right]], thickness=7, color=(255, 0, 255))
|
433 |
+
cv2_imshow(cmask)
|
434 |
+
plt.show()
|
435 |
+
left_min = np.argmin(y[int(len(y) * 0.2):left]) + int(len(y) * 0.2) if int(len(y) * 0.2) < left else left
|
436 |
+
right_min = np.argmin(y[right:int(len(y) * 0.8)]) + right if right < int(len(y) * 0.8) else right
|
437 |
+
if y[left_min] > reg.predict(X[left_min].reshape(-1, 1)):
|
438 |
+
left_check = True
|
439 |
+
if y[right_min] > reg.predict(X[right_min].reshape(-1, 1)):
|
440 |
+
right_check = True
|
441 |
+
if right_check and left_check:
|
442 |
+
break
|
443 |
+
left = left_min - 1
|
444 |
+
right = right_min + 1
|
445 |
+
return min(X.flatten()[left], X.flatten()[right]), max(X.flatten()[left], X.flatten()[right])
|
446 |
+
|
447 |
+
|
448 |
+
def get_JSW(mask, dim=None, pool='mean', p=0.3, verbose=0):
|
449 |
+
if isinstance(mask, str):
|
450 |
+
mask = cv2.imread(mask, 0)
|
451 |
+
if mask is None:
|
452 |
+
return np.zeros(10), np.zeros(10)
|
453 |
+
uc, lc = get_contours(mask, verbose=verbose)
|
454 |
+
left_distances, right_distances, links, contours = distance(mask, uc, lc, p=p, verbose=verbose)
|
455 |
+
if verbose:
|
456 |
+
print('in getjsw')
|
457 |
+
temp = draw_points(mask * 127, contours[0], thickness=3, color=(255, 0, 0))
|
458 |
+
temp = draw_points(temp, contours[1], thickness=3, color=(255, 0, 0))
|
459 |
+
temp = draw_points(temp, contours[2], thickness=3, color=(0, 255, 0))
|
460 |
+
temp = draw_points(temp, contours[3], thickness=3, color=(0, 255, 0))
|
461 |
+
temp = draw_lines(temp, links[::6], color=(0, 0, 255))
|
462 |
+
cv2_imshow(temp)
|
463 |
+
cv2.imwrite("drawn_lines.png", temp)
|
464 |
+
if dim:
|
465 |
+
left_distances = pooling_array(left_distances, dim, pool)
|
466 |
+
right_distances = pooling_array(right_distances, dim, pool)
|
467 |
+
return left_distances, right_distances
|
468 |
+
|
469 |
+
|
470 |
+
def seg(img_path, model=seg_model, verbose=0, combine=False):
|
471 |
+
img = cv2.imdecode(np.fromstring(img_path.read(), np.uint8), 1)
|
472 |
+
# img = cv2.imdecode(np.frombuffer(img_path.read(), np.uint8), 1)
|
473 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
474 |
+
# img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
|
475 |
+
eimg = cv2.equalizeHist(img)
|
476 |
+
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
|
477 |
+
eimg = clahe.apply(eimg)
|
478 |
+
eimg = to_color(eimg)
|
479 |
+
res = seg_model(eimg, verbose=False)
|
480 |
+
mask = res[0].masks.data[0] * (res[0].boxes.cls[0] + 1) + res[0].masks.data[1] * (res[0].boxes.cls[1] + 1)
|
481 |
+
mask = mask.cpu().numpy()
|
482 |
+
if verbose == 1:
|
483 |
+
cv2_imshow(eimg)
|
484 |
+
cv2.imwrite('original.png', eimg)
|
485 |
+
cv2_imshow(combine_mask(eimg, mask))
|
486 |
+
plt.show()
|
487 |
+
if combine:
|
488 |
+
mask = combine_mask(eimg, mask)
|
489 |
+
s1 = np.sum(mask == 1)
|
490 |
+
s2 = np.sum(mask == 2)
|
491 |
+
|
492 |
+
return mask
|
493 |
+
|
494 |
+
|
495 |
+
def split_img(img):
|
496 |
+
img_size = img.shape
|
497 |
+
return img[:, :(img_size[1] // 3), :], img[:, (img_size[1] // 3 * 2):, :]
|
498 |
+
|
499 |
+
|
500 |
+
def combine_mask(image, mask, label2color={1: (255, 255, 0), 2: (0, 255, 255)}, alpha=0.1):
|
501 |
+
image = to_color(image)
|
502 |
+
image = cv2.resize(image, mask.shape)
|
503 |
+
mask_image = np.zeros_like(image)
|
504 |
+
for label, color in label2color.items():
|
505 |
+
mask_image[mask == label] = color
|
506 |
+
|
507 |
+
mask_image = cv2.addWeighted(image, 1 - alpha, mask_image, alpha, 0)
|
508 |
+
return mask_image
|
509 |
+
|
510 |
+
|
511 |
+
def check_outliers(mask):
|
512 |
+
pass
|
513 |
+
|
514 |
+
|
515 |
+
def find_boundaries_v2(mask, top=True, verbose=0):
|
516 |
+
boundaries = []
|
517 |
+
height, width = mask.shape
|
518 |
+
|
519 |
+
contours, _ = cv2.findContours(255 * mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
520 |
+
|
521 |
+
areas = np.array([cv2.contourArea(cnt) for cnt in contours])
|
522 |
+
contour = contours[areas.argmax()]
|
523 |
+
contour = contour.reshape(-1, 2)
|
524 |
+
org_contour = contour.copy()
|
525 |
+
pos = (contour[:, 1].max() + contour[:, 1].min()) // 2
|
526 |
+
idx = np.where(contour[:, 1] == pos)
|
527 |
+
if contour[idx[0][0]][0] < contour[idx[0][1]][0] and not top:
|
528 |
+
start = contour[idx[0][0]]
|
529 |
+
end = contour[idx[0][1]]
|
530 |
+
else:
|
531 |
+
end = contour[idx[0][0]]
|
532 |
+
start = contour[idx[0][1]]
|
533 |
+
start_idx = ((start - contour) ** 2).sum(axis=-1).argmin()
|
534 |
+
end_idx = ((end - contour) ** 2).sum(axis=-1).argmin()
|
535 |
+
if start_idx <= end_idx:
|
536 |
+
contour = contour[start_idx:end_idx + 1]
|
537 |
+
else:
|
538 |
+
contour = np.concatenate([contour[start_idx:], contour[:end_idx + 1]])
|
539 |
+
if verbose:
|
540 |
+
temp = draw_points(127 * mask.astype(np.uint8), contour, thickness=5)
|
541 |
+
temp = draw_points(temp, [start, end], color=[155, 155], thickness=15)
|
542 |
+
cv2_imshow(temp)
|
543 |
+
|
544 |
+
return np.array(contour), np.array(org_contour)
|
545 |
+
|
546 |
+
|
547 |
+
def get_contours_v2(mask, verbose=0):
|
548 |
+
upper_contour, full_upper = find_boundaries_v2(mask == 1, top=False, verbose=verbose)
|
549 |
+
lower_contour, full_lower = find_boundaries_v2(mask == 2, top=True, verbose=verbose)
|
550 |
+
if verbose:
|
551 |
+
temp = draw_points(127 * mask, full_upper, thickness=3, color=(255, 0, 0))
|
552 |
+
temp = draw_points(temp, full_lower, thickness=3)
|
553 |
+
plt.imshow(temp)
|
554 |
+
plt.title("Segmentation")
|
555 |
+
plt.axis('off')
|
556 |
+
plt.show()
|
557 |
+
st.pyplot()
|
558 |
+
# cv2.imwrite('full.png', temp)
|
559 |
+
# temp = draw_points(temp, limit_points, thickness = 7, color = (0, 0, 255))
|
560 |
+
# cv2_imshow(temp)
|
561 |
+
# cv2.imwrite('limit_points.png', temp)
|
562 |
+
if verbose:
|
563 |
+
temp = draw_points(127 * mask, upper_contour, thickness=3, color=(255, 0, 0))
|
564 |
+
temp = draw_points(temp, lower_contour, thickness=3)
|
565 |
+
cv2_imshow(temp)
|
566 |
+
# st.pyplot()
|
567 |
+
# cv2.imwrite('cropped.png', temp)
|
568 |
+
|
569 |
+
return upper_contour, lower_contour
|
570 |
+
|
571 |
+
def normalize_tuple(value, n, name, allow_zero=False):
|
572 |
+
"""Transforms non-negative/positive integer/integers into an integer tuple.
|
573 |
+
Args:
|
574 |
+
value: The value to validate and convert. Could an int, or any iterable of
|
575 |
+
ints.
|
576 |
+
n: The size of the tuple to be returned.
|
577 |
+
name: The name of the argument being validated, e.g. "strides" or
|
578 |
+
"kernel_size". This is only used to format error messages.
|
579 |
+
allow_zero: Default to False. A ValueError will raised if zero is received
|
580 |
+
and this param is False.
|
581 |
+
Returns:
|
582 |
+
A tuple of n integers.
|
583 |
+
Raises:
|
584 |
+
ValueError: If something else than an int/long or iterable thereof or a
|
585 |
+
negative value is
|
586 |
+
passed.
|
587 |
+
"""
|
588 |
+
error_msg = (
|
589 |
+
f"The `{name}` argument must be a tuple of {n} "
|
590 |
+
f"integers. Received: {value}"
|
591 |
+
)
|
592 |
+
|
593 |
+
if isinstance(value, int):
|
594 |
+
value_tuple = (value,) * n
|
595 |
+
else:
|
596 |
+
try:
|
597 |
+
value_tuple = tuple(value)
|
598 |
+
except TypeError:
|
599 |
+
raise ValueError(error_msg)
|
600 |
+
if len(value_tuple) != n:
|
601 |
+
raise ValueError(error_msg)
|
602 |
+
for single_value in value_tuple:
|
603 |
+
try:
|
604 |
+
int(single_value)
|
605 |
+
except (ValueError, TypeError):
|
606 |
+
error_msg += (
|
607 |
+
f"including element {single_value} of "
|
608 |
+
f"type {type(single_value)}"
|
609 |
+
)
|
610 |
+
raise ValueError(error_msg)
|
611 |
+
|
612 |
+
if allow_zero:
|
613 |
+
unqualified_values = {v for v in value_tuple if v < 0}
|
614 |
+
req_msg = ">= 0"
|
615 |
+
else:
|
616 |
+
unqualified_values = {v for v in value_tuple if v <= 0}
|
617 |
+
req_msg = "> 0"
|
618 |
+
|
619 |
+
if unqualified_values:
|
620 |
+
error_msg += (
|
621 |
+
f" including {unqualified_values}"
|
622 |
+
f" that does not satisfy the requirement `{req_msg}`."
|
623 |
+
)
|
624 |
+
raise ValueError(error_msg)
|
625 |
+
|
626 |
+
return value_tuple
|
627 |
+
|
628 |
+
def adjust_pretrained_weights(model_cls, input_size, name=None):
|
629 |
+
weights_model = model_cls(weights='imagenet',
|
630 |
+
include_top=False,
|
631 |
+
input_shape=(*input_size, 3))
|
632 |
+
target_model = model_cls(weights=None,
|
633 |
+
include_top=False,
|
634 |
+
input_shape=(*input_size, 1))
|
635 |
+
weights = weights_model.get_weights()
|
636 |
+
weights[0] = np.sum(weights[0], axis=2, keepdims=True)
|
637 |
+
target_model.set_weights(weights)
|
638 |
+
|
639 |
+
del weights_model
|
640 |
+
tf.keras.backend.clear_session()
|
641 |
+
gc.collect()
|
642 |
+
if name:
|
643 |
+
target_model._name = name
|
644 |
+
return target_model
|
645 |
+
|
646 |
+
from keras import backend as K
|
647 |
+
|
648 |
+
|
649 |
+
def squeeze_excite_block(input, ratio=16):
|
650 |
+
''' Create a channel-wise squeeze-excite block
|
651 |
+
|
652 |
+
Args:
|
653 |
+
input: input tensor
|
654 |
+
filters: number of output filters
|
655 |
+
|
656 |
+
Returns: a keras tensor
|
657 |
+
|
658 |
+
References
|
659 |
+
- [Squeeze and Excitation Networks](https://arxiv.org/abs/1709.01507)
|
660 |
+
'''
|
661 |
+
init = input
|
662 |
+
channel_axis = 1 if K.image_data_format() == "channels_first" else -1
|
663 |
+
filters = int(init.shape[channel_axis])
|
664 |
+
se_shape = (1, 1, filters)
|
665 |
+
|
666 |
+
se = GlobalAveragePooling2D()(init)
|
667 |
+
se = Reshape(se_shape)(se)
|
668 |
+
se = Dense(filters // ratio, activation='relu', kernel_initializer='he_normal', use_bias=False)(se)
|
669 |
+
se = Dense(filters, activation='sigmoid', kernel_initializer='he_normal', use_bias=False)(se)
|
670 |
+
|
671 |
+
if K.image_data_format() == 'channels_first':
|
672 |
+
se = Permute((3, 1, 2))(se)
|
673 |
+
|
674 |
+
x = Multiply()([init, se])
|
675 |
+
return x
|
676 |
+
|
677 |
+
|
678 |
+
def spatial_squeeze_excite_block(input):
|
679 |
+
''' Create a spatial squeeze-excite block
|
680 |
+
|
681 |
+
Args:
|
682 |
+
input: input tensor
|
683 |
+
|
684 |
+
Returns: a keras tensor
|
685 |
+
|
686 |
+
References
|
687 |
+
- [Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks](https://arxiv.org/abs/1803.02579)
|
688 |
+
'''
|
689 |
+
|
690 |
+
se = Conv2D(1, (1, 1), activation='sigmoid', use_bias=False,
|
691 |
+
kernel_initializer='he_normal')(input)
|
692 |
+
|
693 |
+
x = Multiply()([input, se])
|
694 |
+
return x
|
695 |
+
|
696 |
+
|
697 |
+
def channel_spatial_squeeze_excite(input, ratio=16):
|
698 |
+
''' Create a spatial squeeze-excite block
|
699 |
+
|
700 |
+
Args:
|
701 |
+
input: input tensor
|
702 |
+
filters: number of output filters
|
703 |
+
|
704 |
+
Returns: a keras tensor
|
705 |
+
|
706 |
+
References
|
707 |
+
- [Squeeze and Excitation Networks](https://arxiv.org/abs/1709.01507)
|
708 |
+
- [Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks](https://arxiv.org/abs/1803.02579)
|
709 |
+
'''
|
710 |
+
|
711 |
+
cse = squeeze_excite_block(input, ratio)
|
712 |
+
sse = spatial_squeeze_excite_block(input)
|
713 |
+
|
714 |
+
x = Add()([cse, sse])
|
715 |
+
return x
|
716 |
+
|
717 |
+
def DoubleConv(filters, kernel_size, initializer='glorot_uniform'):
|
718 |
+
def layer(x):
|
719 |
+
|
720 |
+
x = Conv2D(filters, kernel_size, padding='same', kernel_initializer=initializer)(x)
|
721 |
+
x = BatchNormalization()(x)
|
722 |
+
x = Activation('swish')(x)
|
723 |
+
x = Conv2D(filters, kernel_size, padding='same', kernel_initializer=initializer)(x)
|
724 |
+
x = BatchNormalization()(x)
|
725 |
+
x = Activation('swish')(x)
|
726 |
+
|
727 |
+
return x
|
728 |
+
|
729 |
+
return layer
|
730 |
+
|
731 |
+
def UpSampling2D_block(filters, kernel_size=(3, 3), upsample_rate=(2, 2), interpolation='bilinear',
|
732 |
+
initializer='glorot_uniform', skip=None):
|
733 |
+
def layer(input_tensor):
|
734 |
+
|
735 |
+
x = UpSampling2D(size=upsample_rate, interpolation=interpolation)(input_tensor)
|
736 |
+
|
737 |
+
if skip is not None:
|
738 |
+
x = Concatenate()([x, skip])
|
739 |
+
|
740 |
+
x = DoubleConv(filters, kernel_size, initializer=initializer)(x)
|
741 |
+
x = channel_spatial_squeeze_excite(x)
|
742 |
+
return x
|
743 |
+
|
744 |
+
return layer
|
745 |
+
|
746 |
+
def Conv2DTranspose_block(filters, transpose_kernel_size=(3, 3), upsample_rate=(2, 2),
|
747 |
+
initializer='glorot_uniform', skip=None, met_input=None, sat_input=None):
|
748 |
+
def layer(input_tensor):
|
749 |
+
x = Conv2DTranspose(filters, transpose_kernel_size, strides=upsample_rate, padding='same')(input_tensor)
|
750 |
+
if skip is not None:
|
751 |
+
x = Concatenate()([x, skip])
|
752 |
+
|
753 |
+
x = DoubleConv(filters, transpose_kernel_size, initializer=initializer)(x)
|
754 |
+
x = channel_spatial_squeeze_excite(x)
|
755 |
+
return x
|
756 |
+
|
757 |
+
return layer
|
758 |
+
|
759 |
+
def PixelShuffle_block(filters, kernel_size=(3, 3), upsample_rate=2,
|
760 |
+
initializer='glorot_uniform', skip=None, met_input=None, sat_input=None):
|
761 |
+
def layer(input_tensor):
|
762 |
+
x = Conv2D(filters * (upsample_rate ** 2), kernel_size, padding="same",
|
763 |
+
activation="swish", kernel_initializer='Orthogonal')(input_tensor)
|
764 |
+
x = tf.nn.depth_to_space(x, upsample_rate)
|
765 |
+
if skip is not None:
|
766 |
+
x = Concatenate()([x, skip])
|
767 |
+
|
768 |
+
x = DoubleConv(filters, kernel_size, initializer=initializer)(x)
|
769 |
+
x = channel_spatial_squeeze_excite(x)
|
770 |
+
return x
|
771 |
+
|
772 |
+
return layer
|
773 |
+
|
774 |
+
class DropBlockNoise(BaseRandomLayer):
|
775 |
+
def __init__(
|
776 |
+
self,
|
777 |
+
rate,
|
778 |
+
block_size,
|
779 |
+
seed=None,
|
780 |
+
**kwargs,
|
781 |
+
):
|
782 |
+
super().__init__(seed=seed, **kwargs)
|
783 |
+
if not 0.0 <= rate <= 1.0:
|
784 |
+
raise ValueError(
|
785 |
+
f"rate must be a number between 0 and 1. " f"Received: {rate}"
|
786 |
+
)
|
787 |
+
|
788 |
+
self._rate = rate
|
789 |
+
(
|
790 |
+
self._dropblock_height,
|
791 |
+
self._dropblock_width,
|
792 |
+
) = normalize_tuple(
|
793 |
+
value=block_size, n=2, name="block_size", allow_zero=False
|
794 |
+
)
|
795 |
+
self.seed = seed
|
796 |
+
|
797 |
+
def call(self, x, training=None):
|
798 |
+
if not training or self._rate == 0.0:
|
799 |
+
return x
|
800 |
+
|
801 |
+
_, height, width, _ = tf.split(tf.shape(x), 4)
|
802 |
+
|
803 |
+
# Unnest scalar values
|
804 |
+
height = tf.squeeze(height)
|
805 |
+
width = tf.squeeze(width)
|
806 |
+
|
807 |
+
dropblock_height = tf.math.minimum(self._dropblock_height, height)
|
808 |
+
dropblock_width = tf.math.minimum(self._dropblock_width, width)
|
809 |
+
|
810 |
+
gamma = (
|
811 |
+
self._rate
|
812 |
+
* tf.cast(width * height, dtype=tf.float32)
|
813 |
+
/ tf.cast(dropblock_height * dropblock_width, dtype=tf.float32)
|
814 |
+
/ tf.cast(
|
815 |
+
(width - self._dropblock_width + 1)
|
816 |
+
* (height - self._dropblock_height + 1),
|
817 |
+
tf.float32,
|
818 |
+
)
|
819 |
+
)
|
820 |
+
|
821 |
+
# Forces the block to be inside the feature map.
|
822 |
+
w_i, h_i = tf.meshgrid(tf.range(width), tf.range(height))
|
823 |
+
valid_block = tf.logical_and(
|
824 |
+
tf.logical_and(
|
825 |
+
w_i >= int(dropblock_width // 2),
|
826 |
+
w_i < width - (dropblock_width - 1) // 2,
|
827 |
+
),
|
828 |
+
tf.logical_and(
|
829 |
+
h_i >= int(dropblock_height // 2),
|
830 |
+
h_i < width - (dropblock_height - 1) // 2,
|
831 |
+
),
|
832 |
+
)
|
833 |
+
|
834 |
+
valid_block = tf.reshape(valid_block, [1, height, width, 1])
|
835 |
+
|
836 |
+
random_noise = self._random_generator.random_uniform(
|
837 |
+
tf.shape(x), dtype=tf.float32
|
838 |
+
)
|
839 |
+
valid_block = tf.cast(valid_block, dtype=tf.float32)
|
840 |
+
seed_keep_rate = tf.cast(1 - gamma, dtype=tf.float32)
|
841 |
+
block_pattern = (1 - valid_block + seed_keep_rate + random_noise) >= 1
|
842 |
+
block_pattern = tf.cast(block_pattern, dtype=tf.float32)
|
843 |
+
|
844 |
+
window_size = [1, self._dropblock_height, self._dropblock_width, 1]
|
845 |
+
|
846 |
+
# Double negative and max_pool is essentially min_pooling
|
847 |
+
block_pattern = -tf.nn.max_pool(
|
848 |
+
-block_pattern,
|
849 |
+
ksize=window_size,
|
850 |
+
strides=[1, 1, 1, 1],
|
851 |
+
padding="SAME",
|
852 |
+
)
|
853 |
+
|
854 |
+
return (
|
855 |
+
x * tf.cast(block_pattern, x.dtype)
|
856 |
+
)
|
857 |
+
|
858 |
+
def get_efficient_unet(name=None,
|
859 |
+
option='full',
|
860 |
+
input_shape=(IMAGE_SIZE, IMAGE_SIZE, 1),
|
861 |
+
encoder_weights=None,
|
862 |
+
block_type='conv-transpose',
|
863 |
+
output_activation='sigmoid',
|
864 |
+
kernel_initializer='glorot_uniform'):
|
865 |
+
|
866 |
+
if encoder_weights == 'imagenet':
|
867 |
+
encoder = adjust_pretrained_weights(EfficientNetV2S, input_shape[:-1], name)
|
868 |
+
elif encoder_weights is None:
|
869 |
+
encoder = EfficientNetV2S(weights=None,
|
870 |
+
include_top=False,
|
871 |
+
input_shape=input_shape)
|
872 |
+
encoder._name = name
|
873 |
+
else:
|
874 |
+
raise ValueError(encoder_weights)
|
875 |
+
|
876 |
+
if option == 'encoder':
|
877 |
+
return encoder
|
878 |
+
|
879 |
+
MBConvBlocks = []
|
880 |
+
|
881 |
+
skip_candidates = ['1b', '2d', '3d', '4f']
|
882 |
+
|
883 |
+
for mbblock_nr in skip_candidates:
|
884 |
+
mbblock = encoder.get_layer('block{}_add'.format(mbblock_nr)).output
|
885 |
+
MBConvBlocks.append(mbblock)
|
886 |
+
|
887 |
+
head = encoder.get_layer('top_activation').output
|
888 |
+
blocks = MBConvBlocks + [head]
|
889 |
+
|
890 |
+
if block_type == 'upsampling':
|
891 |
+
UpBlock = UpSampling2D_block
|
892 |
+
elif block_type == 'conv-transpose':
|
893 |
+
UpBlock = Conv2DTranspose_block
|
894 |
+
elif block_type == 'pixel-shuffle':
|
895 |
+
UpBlock = PixelShuffle_block
|
896 |
+
else:
|
897 |
+
raise ValueError(block_type)
|
898 |
+
|
899 |
+
o = blocks.pop()
|
900 |
+
o = UpBlock(512, initializer=kernel_initializer, skip=blocks.pop())(o)
|
901 |
+
o = UpBlock(256, initializer=kernel_initializer, skip=blocks.pop())(o)
|
902 |
+
o = UpBlock(128, initializer=kernel_initializer, skip=blocks.pop())(o)
|
903 |
+
o = UpBlock(64, initializer=kernel_initializer, skip=blocks.pop())(o)
|
904 |
+
o = UpBlock(32, initializer=kernel_initializer, skip=None)(o)
|
905 |
+
o = Conv2D(input_shape[-1], (1, 1), padding='same', activation=output_activation, kernel_initializer=kernel_initializer)(o)
|
906 |
+
|
907 |
+
model = Model(encoder.input, o, name=name)
|
908 |
+
|
909 |
+
if option == 'full':
|
910 |
+
return model, encoder
|
911 |
+
elif option == 'model':
|
912 |
+
return model
|
913 |
+
else:
|
914 |
+
raise ValueError(option)
|
915 |
+
|
916 |
+
|
917 |
+
def acc(y_true, y_pred, threshold=0.5):
|
918 |
+
threshold = tf.cast(threshold, y_pred.dtype)
|
919 |
+
y_pred = tf.cast(y_pred > threshold, y_pred.dtype)
|
920 |
+
return tf.reduce_mean(tf.cast(tf.equal(y_true, y_pred), tf.float32))
|
921 |
+
|
922 |
+
def mae(y_true, y_pred):
|
923 |
+
return tf.reduce_mean(tf.abs(y_true-y_pred))
|
924 |
+
|
925 |
+
def inv_ssim(y_true, y_pred):
|
926 |
+
return 1 - tf.reduce_mean(tf.image.ssim(y_true, y_pred, 1.0))
|
927 |
+
|
928 |
+
def inv_msssim(y_true, y_pred):
|
929 |
+
return 1 - tf.reduce_mean(tf.image.ssim_multiscale(y_true, y_pred, 1.0, filter_size=4))
|
930 |
+
|
931 |
+
def inv_msssim_l1(y_true, y_pred, alpha=0.8):
|
932 |
+
return alpha*inv_msssim(y_true, y_pred) + (1-alpha)*mae(y_true, y_pred)
|
933 |
+
|
934 |
+
def inv_msssim_gaussian_l1(y_true, y_pred, alpha=0.8):
|
935 |
+
l1_diff = tf.abs(y_true-y_pred)
|
936 |
+
gaussian_l1 = tfa.image.gaussian_filter2d(l1_diff, filter_shape=(11, 11), sigma=1.5)
|
937 |
+
return alpha*inv_msssim(y_true, y_pred) + (1-alpha)*gaussian_l1
|
938 |
+
|
939 |
+
def psnr(y_true, y_pred):
|
940 |
+
return tf.reduce_mean(tf.image.psnr(y_true, y_pred, 1.0))
|
941 |
+
|
942 |
+
|
943 |
+
class MultipleTrackers():
|
944 |
+
def __init__(self, callback_lists: list):
|
945 |
+
self.callbacks_list = callback_lists
|
946 |
+
|
947 |
+
def __getattr__(self, attr):
|
948 |
+
def helper(*arg, **kwarg):
|
949 |
+
for cb in self.callbacks_list:
|
950 |
+
getattr(cb, attr)(*arg, **kwarg)
|
951 |
+
if attr in self.__class__.__dict__:
|
952 |
+
return getattr(self, attr)
|
953 |
+
else:
|
954 |
+
return helper
|
955 |
+
|
956 |
+
class DCGAN():
|
957 |
+
def __init__(self,
|
958 |
+
input_shape=(IMAGE_SIZE, IMAGE_SIZE, 1),
|
959 |
+
architecture='two-stage',
|
960 |
+
pretrain_weights=None,
|
961 |
+
output_activation='sigmoid',
|
962 |
+
block_type='conv-transpose',
|
963 |
+
kernel_initializer='glorot_uniform',
|
964 |
+
noise=None,
|
965 |
+
C=1.):
|
966 |
+
|
967 |
+
self.C = C
|
968 |
+
# Build
|
969 |
+
kwargs = dict(input_shape=input_shape,
|
970 |
+
output_activation=output_activation,
|
971 |
+
encoder_weights=pretrain_weights,
|
972 |
+
block_type=block_type,
|
973 |
+
kernel_initializer=kernel_initializer)
|
974 |
+
|
975 |
+
if architecture == 'two-stage':
|
976 |
+
encoder = get_efficient_unet(name='dcgan_disc',
|
977 |
+
option='encoder',
|
978 |
+
**kwargs)
|
979 |
+
|
980 |
+
self.generator = get_efficient_unet(name='dcgan_gen', option='model', **kwargs)
|
981 |
+
elif architecture == 'shared':
|
982 |
+
|
983 |
+
self.generator, encoder = get_efficient_unet(name='dcgan', option='full', **kwargs)
|
984 |
+
else:
|
985 |
+
raise ValueError(f'Unsupport architecture: {architecture}')
|
986 |
+
|
987 |
+
gpooling = GlobalAveragePooling2D()(encoder.output)
|
988 |
+
prediction = Dense(1, activation='sigmoid')(gpooling)
|
989 |
+
self.discriminator = Model(encoder.input, prediction, name='dcgan_disc')
|
990 |
+
|
991 |
+
tf.keras.backend.clear_session()
|
992 |
+
_ = gc.collect()
|
993 |
+
|
994 |
+
if noise:
|
995 |
+
gen_inputs = self.generator.input
|
996 |
+
corrupted_inputs = noise(gen_inputs)
|
997 |
+
outputs = self.generator(corrupted_inputs)
|
998 |
+
self.generator = Model(gen_inputs, outputs, name='dcgan_gen')
|
999 |
+
|
1000 |
+
tf.keras.backend.clear_session()
|
1001 |
+
_ = gc.collect()
|
1002 |
+
|
1003 |
+
if output_activation == 'tanh':
|
1004 |
+
|
1005 |
+
self.process_input = layers.Lambda(lambda img: (img*2.-1.), name='dcgan_normalize')
|
1006 |
+
self.process_output = layers.Lambda(lambda img: (img*0.5+0.5), name='dcgan_denormalize')
|
1007 |
+
gen_inputs = self.generator.input
|
1008 |
+
process_inputs = self.process_input(gen_inputs)
|
1009 |
+
process_inputs = self.generator(process_inputs)
|
1010 |
+
gen_outputs = self.process_output(process_inputs)
|
1011 |
+
self.generator = Model(gen_inputs, gen_outputs, name='dcgan_gen')
|
1012 |
+
|
1013 |
+
disc_inputs = self.discriminator.input
|
1014 |
+
process_inputs = self.process_input(disc_inputs)
|
1015 |
+
disc_outputs = self.discriminator(process_inputs)
|
1016 |
+
self.discriminator = Model(disc_inputs, disc_outputs, name='dcgan_disc')
|
1017 |
+
|
1018 |
+
tf.keras.backend.clear_session()
|
1019 |
+
_ = gc.collect()
|
1020 |
+
|
1021 |
+
def summary(self):
|
1022 |
+
self.generator.summary()
|
1023 |
+
self.discriminator.summary()
|
1024 |
+
|
1025 |
+
def compile(self,
|
1026 |
+
generator_optimizer=Adam(5e-4, 0.5),
|
1027 |
+
discriminator_optimizer=Adam(5e-4),
|
1028 |
+
reconstruction_loss=mae,
|
1029 |
+
discriminative_loss=tf.keras.losses.BinaryCrossentropy(from_logits=False),
|
1030 |
+
reconstruction_metrics=[],
|
1031 |
+
discriminative_metrics=[]):
|
1032 |
+
|
1033 |
+
self.discriminator_optimizer = discriminator_optimizer
|
1034 |
+
self.discriminator.compile(optimizer=self.discriminator_optimizer)
|
1035 |
+
|
1036 |
+
self.generator_optimizer = generator_optimizer
|
1037 |
+
self.generator.compile(optimizer=self.generator_optimizer)
|
1038 |
+
|
1039 |
+
self.loss = discriminative_loss
|
1040 |
+
self.reconstruction_loss = reconstruction_loss
|
1041 |
+
self.d_loss_tracker = tf.keras.metrics.Mean()
|
1042 |
+
self.g_loss_tracker = tf.keras.metrics.Mean()
|
1043 |
+
self.g_recon_tracker = tf.keras.metrics.Mean()
|
1044 |
+
self.g_disc_tracker = tf.keras.metrics.Mean()
|
1045 |
+
|
1046 |
+
self.g_metric_trackers = [(tf.keras.metrics.Mean(), metric) for metric in reconstruction_metrics]
|
1047 |
+
self.d_metric_trackers = [(tf.keras.metrics.Mean(), tf.keras.metrics.Mean(), tf.keras.metrics.Mean(), metric) for metric in discriminative_metrics]
|
1048 |
+
|
1049 |
+
all_trackers = [self.d_loss_tracker, self.g_loss_tracker, self.g_recon_tracker, self.g_disc_tracker] + \
|
1050 |
+
[tracker for tracker,_ in self.g_metric_trackers] + \
|
1051 |
+
[tracker for t in self.d_metric_trackers for tracker in t[:-1]]
|
1052 |
+
self.all_trackers = MultipleTrackers(all_trackers)
|
1053 |
+
|
1054 |
+
def discriminator_loss(self, real_output, fake_output):
|
1055 |
+
real_loss = self.loss(tf.ones_like(real_output), real_output)
|
1056 |
+
fake_loss = self.loss(tf.zeros_like(fake_output), fake_output)
|
1057 |
+
total_loss = 0.5*(real_loss + fake_loss)
|
1058 |
+
return total_loss
|
1059 |
+
|
1060 |
+
def generator_loss(self, fake_output):
|
1061 |
+
return self.loss(tf.ones_like(fake_output), fake_output)
|
1062 |
+
|
1063 |
+
@tf.function
|
1064 |
+
def train_step(self, images):
|
1065 |
+
masked, original = images
|
1066 |
+
n_samples = tf.shape(original)[0]
|
1067 |
+
|
1068 |
+
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
|
1069 |
+
generated_images = self.generator(masked, training=True)
|
1070 |
+
|
1071 |
+
real_output = self.discriminator(original, training=True)
|
1072 |
+
fake_output = self.discriminator(generated_images, training=True)
|
1073 |
+
|
1074 |
+
gen_disc_loss = self.generator_loss(fake_output)
|
1075 |
+
recon_loss = self.reconstruction_loss(original, generated_images)
|
1076 |
+
gen_loss = self.C*recon_loss + gen_disc_loss
|
1077 |
+
disc_loss = self.discriminator_loss(real_output, fake_output)
|
1078 |
+
|
1079 |
+
gradients_of_generator = gen_tape.gradient(gen_loss, self.generator.trainable_variables)
|
1080 |
+
gradients_of_discriminator = disc_tape.gradient(disc_loss, self.discriminator.trainable_variables)
|
1081 |
+
|
1082 |
+
self.generator_optimizer.apply_gradients(zip(gradients_of_generator, self.generator.trainable_variables))
|
1083 |
+
self.discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, self.discriminator.trainable_variables))
|
1084 |
+
|
1085 |
+
self.d_loss_tracker.update_state(tf.repeat([[disc_loss]], repeats=n_samples, axis=0))
|
1086 |
+
self.g_loss_tracker.update_state(tf.repeat([[gen_loss]], repeats=n_samples, axis=0))
|
1087 |
+
self.g_recon_tracker.update_state(tf.repeat([[recon_loss]], repeats=n_samples, axis=0))
|
1088 |
+
self.g_disc_tracker.update_state(tf.repeat([[gen_disc_loss]], repeats=n_samples, axis=0))
|
1089 |
+
|
1090 |
+
logs = {'d_loss': self.d_loss_tracker.result()}
|
1091 |
+
|
1092 |
+
for tracker, real_tracker, fake_tracker, metric in self.d_metric_trackers:
|
1093 |
+
v_real = metric(tf.ones_like(real_output), real_output)
|
1094 |
+
v_fake = metric(tf.zeros_like(fake_output), fake_output)
|
1095 |
+
v = 0.5*(v_real + v_fake)
|
1096 |
+
tracker.update_state(tf.repeat([[v]], repeats=n_samples, axis=0))
|
1097 |
+
real_tracker.update_state(tf.repeat([[v_real]], repeats=n_samples, axis=0))
|
1098 |
+
fake_tracker.update_state(tf.repeat([[v_fake]], repeats=n_samples, axis=0))
|
1099 |
+
|
1100 |
+
metric_name = metric.__name__
|
1101 |
+
logs['d_' + metric_name] = tracker.result()
|
1102 |
+
logs['d_real_' + metric_name] = real_tracker.result()
|
1103 |
+
logs['d_fake_' + metric_name] = fake_tracker.result()
|
1104 |
+
|
1105 |
+
logs['g_loss'] = self.g_loss_tracker.result()
|
1106 |
+
logs['g_recon'] = self.g_recon_tracker.result()
|
1107 |
+
logs['g_disc'] = self.g_disc_tracker.result()
|
1108 |
+
|
1109 |
+
for tracker, metric in self.g_metric_trackers:
|
1110 |
+
v = metric(original, generated_images)
|
1111 |
+
tracker.update_state(tf.repeat([[v]], repeats=n_samples, axis=0))
|
1112 |
+
logs['g_' + metric.__name__] = tracker.result()
|
1113 |
+
|
1114 |
+
return logs
|
1115 |
+
|
1116 |
+
@tf.function
|
1117 |
+
def val_step(self, images):
|
1118 |
+
masked, original = images
|
1119 |
+
n_samples = tf.shape(original)[0]
|
1120 |
+
|
1121 |
+
generated_images = self.generator(masked, training=False)
|
1122 |
+
|
1123 |
+
real_output = self.discriminator(original, training=False)
|
1124 |
+
fake_output = self.discriminator(generated_images, training=False)
|
1125 |
+
|
1126 |
+
gen_disc_loss = self.generator_loss(fake_output)
|
1127 |
+
recon_loss = self.reconstruction_loss(original, generated_images)
|
1128 |
+
gen_loss = self.C*recon_loss + gen_disc_loss
|
1129 |
+
disc_loss = self.discriminator_loss(real_output, fake_output)
|
1130 |
+
|
1131 |
+
self.d_loss_tracker.update_state(tf.repeat([[disc_loss]], repeats=n_samples, axis=0))
|
1132 |
+
self.g_loss_tracker.update_state(tf.repeat([[gen_loss]], repeats=n_samples, axis=0))
|
1133 |
+
self.g_recon_tracker.update_state(tf.repeat([[recon_loss]], repeats=n_samples, axis=0))
|
1134 |
+
self.g_disc_tracker.update_state(tf.repeat([[gen_disc_loss]], repeats=n_samples, axis=0))
|
1135 |
+
|
1136 |
+
logs = {'val_d_loss': self.d_loss_tracker.result()}
|
1137 |
+
|
1138 |
+
for tracker, real_tracker, fake_tracker, metric in self.d_metric_trackers:
|
1139 |
+
v_real = metric(tf.ones_like(real_output), real_output)
|
1140 |
+
v_fake = metric(tf.zeros_like(fake_output), fake_output)
|
1141 |
+
v = 0.5*(v_real + v_fake)
|
1142 |
+
tracker.update_state(tf.repeat([[v]], repeats=n_samples, axis=0))
|
1143 |
+
real_tracker.update_state(tf.repeat([[v_real]], repeats=n_samples, axis=0))
|
1144 |
+
fake_tracker.update_state(tf.repeat([[v_fake]], repeats=n_samples, axis=0))
|
1145 |
+
|
1146 |
+
metric_name = metric.__name__
|
1147 |
+
logs['val_d_' + metric_name] = tracker.result()
|
1148 |
+
logs['val_d_real_' + metric_name] = real_tracker.result()
|
1149 |
+
logs['val_d_fake_' + metric_name] = fake_tracker.result()
|
1150 |
+
|
1151 |
+
logs['val_g_loss'] = self.g_loss_tracker.result()
|
1152 |
+
logs['val_g_recon'] = self.g_recon_tracker.result()
|
1153 |
+
logs['val_g_disc'] = self.g_disc_tracker.result()
|
1154 |
+
|
1155 |
+
for tracker, metric in self.g_metric_trackers:
|
1156 |
+
v = metric(original, generated_images)
|
1157 |
+
tracker.update_state(tf.repeat([[v]], repeats=n_samples, axis=0))
|
1158 |
+
logs['val_g_' + metric.__name__] = tracker.result()
|
1159 |
+
|
1160 |
+
return logs
|
1161 |
+
|
1162 |
+
def fit(self,
|
1163 |
+
trainset,
|
1164 |
+
valset=None,
|
1165 |
+
trainsize=-1,
|
1166 |
+
valsize=-1,
|
1167 |
+
epochs=1,
|
1168 |
+
display_per_epochs=5,
|
1169 |
+
generator_callbacks=[],
|
1170 |
+
discriminator_callbacks=[]):
|
1171 |
+
|
1172 |
+
print('🌊🐉 Start Training 🐉🌊')
|
1173 |
+
gen_callback_tracker = tf.keras.callbacks.CallbackList(
|
1174 |
+
generator_callbacks, add_history=True, model=self.generator
|
1175 |
+
)
|
1176 |
+
|
1177 |
+
disc_callback_tracker = tf.keras.callbacks.CallbackList(
|
1178 |
+
discriminator_callbacks, add_history=True, model=self.discriminator
|
1179 |
+
)
|
1180 |
+
|
1181 |
+
callbacks_tracker = MultipleTrackers([gen_callback_tracker, disc_callback_tracker])
|
1182 |
+
|
1183 |
+
logs = {}
|
1184 |
+
callbacks_tracker.on_train_begin(logs=logs)
|
1185 |
+
|
1186 |
+
for epoch in range(epochs):
|
1187 |
+
print(f'Epochs {epoch+1}/{epochs}:')
|
1188 |
+
callbacks_tracker.on_epoch_begin(epoch, logs=logs)
|
1189 |
+
|
1190 |
+
batches = tqdm(trainset,
|
1191 |
+
desc="Train",
|
1192 |
+
total=trainsize,
|
1193 |
+
unit="step",
|
1194 |
+
position=0,
|
1195 |
+
leave=True)
|
1196 |
+
|
1197 |
+
for batch, image_batch in enumerate(batches):
|
1198 |
+
|
1199 |
+
callbacks_tracker.on_batch_begin(batch, logs=logs)
|
1200 |
+
callbacks_tracker.on_train_batch_begin(batch, logs=logs)
|
1201 |
+
|
1202 |
+
train_logs = {k:v.numpy() for k, v in self.train_step(image_batch).items()}
|
1203 |
+
logs.update(train_logs)
|
1204 |
+
|
1205 |
+
callbacks_tracker.on_train_batch_end(batch, logs=logs)
|
1206 |
+
callbacks_tracker.on_batch_end(batch, logs=logs)
|
1207 |
+
batches.set_postfix({'d_loss': train_logs['d_loss'],
|
1208 |
+
'g_loss': train_logs['g_loss']
|
1209 |
+
})
|
1210 |
+
|
1211 |
+
# Presentation
|
1212 |
+
stats = ", ".join("{}={:.3g}".format(k, v) for k, v in logs.items() if 'val_' not in k and 'loss' not in k)
|
1213 |
+
print('Train:', stats)
|
1214 |
+
|
1215 |
+
batches.close()
|
1216 |
+
if valset:
|
1217 |
+
self.all_trackers.reset_state()
|
1218 |
+
|
1219 |
+
batches = tqdm(valset,
|
1220 |
+
desc="Valid",
|
1221 |
+
total=valsize,
|
1222 |
+
unit="step",
|
1223 |
+
position=0,
|
1224 |
+
leave=True)
|
1225 |
+
|
1226 |
+
for batch, image_batch in enumerate(batches):
|
1227 |
+
callbacks_tracker.on_batch_begin(batch, logs=logs)
|
1228 |
+
callbacks_tracker.on_test_batch_begin(batch, logs=logs)
|
1229 |
+
val_logs = {k:v.numpy() for k, v in self.val_step(image_batch).items()}
|
1230 |
+
logs.update(val_logs)
|
1231 |
+
|
1232 |
+
callbacks_tracker.on_test_batch_end(batch, logs=logs)
|
1233 |
+
callbacks_tracker.on_batch_end(batch, logs=logs)
|
1234 |
+
# Presentation
|
1235 |
+
batches.set_postfix({'val_d_loss': val_logs['val_d_loss'],
|
1236 |
+
'val_g_loss': val_logs['val_g_loss']
|
1237 |
+
})
|
1238 |
+
|
1239 |
+
stats = ", ".join("{}={:.3g}".format(k, v) for k, v in logs.items() if 'val_' in k and 'loss' not in k)
|
1240 |
+
print('Valid:', stats)
|
1241 |
+
|
1242 |
+
batches.close()
|
1243 |
+
|
1244 |
+
if epoch % display_per_epochs == 0:
|
1245 |
+
print('-'*128)
|
1246 |
+
self.visualize_samples((image_batch[0][:2], image_batch[1][:2]))
|
1247 |
+
|
1248 |
+
self.all_trackers.reset_state()
|
1249 |
+
|
1250 |
+
callbacks_tracker.on_epoch_end(epoch, logs=logs)
|
1251 |
+
# tf.keras.backend.clear_session()
|
1252 |
+
_ = gc.collect()
|
1253 |
+
|
1254 |
+
if self.generator.stop_training or self.discriminator.stop_training:
|
1255 |
+
break
|
1256 |
+
print('-'*128)
|
1257 |
+
|
1258 |
+
callbacks_tracker.on_train_end(logs=logs)
|
1259 |
+
tf.keras.backend.clear_session()
|
1260 |
+
_ = gc.collect()
|
1261 |
+
gen_history = None
|
1262 |
+
for cb in gen_callback_tracker:
|
1263 |
+
if isinstance(cb, tf.keras.callbacks.History):
|
1264 |
+
gen_history = cb
|
1265 |
+
gen_history.history = {k:v for k,v in cb.history.items() if 'd_' not in k}
|
1266 |
+
|
1267 |
+
disc_history = None
|
1268 |
+
for cb in disc_callback_tracker:
|
1269 |
+
if isinstance(cb, tf.keras.callbacks.History):
|
1270 |
+
disc_history = cb
|
1271 |
+
disc_history.history = {k:v for k,v in cb.history.items() if 'g_' not in k}
|
1272 |
+
|
1273 |
+
return {'generator':gen_history,
|
1274 |
+
'discriminator':disc_history}
|
1275 |
+
|
1276 |
+
def visualize_samples(self, samples, figsize=(12, 2)):
|
1277 |
+
x, y = samples
|
1278 |
+
y_pred = self.generator.predict(x[:2], verbose=0)
|
1279 |
+
fig, axs = plt.subplots(1, 6, figsize=figsize)
|
1280 |
+
for i in range(2):
|
1281 |
+
pos = 3*i
|
1282 |
+
axs[pos].imshow(x[i], cmap='gray', vmin=0., vmax=1.)
|
1283 |
+
axs[pos].set_title('Masked')
|
1284 |
+
axs[pos].axis('off')
|
1285 |
+
axs[pos+1].imshow(y[i], cmap='gray', vmin=0., vmax=1.)
|
1286 |
+
axs[pos+1].set_title('Original')
|
1287 |
+
axs[pos+1].axis('off')
|
1288 |
+
axs[pos+2].imshow(y_pred[i], cmap='gray', vmin=0., vmax=1.)
|
1289 |
+
axs[pos+2].set_title('Predicted')
|
1290 |
+
axs[pos+2].axis('off')
|
1291 |
+
plt.show()
|
1292 |
+
|
1293 |
+
# tf.keras.backend.clear_session()
|
1294 |
+
del y_pred
|
1295 |
+
_ = gc.collect()
|
1296 |
+
|
1297 |
+
dcgan = DCGAN(input_shape=(IMAGE_SIZE, IMAGE_SIZE, 1),
|
1298 |
+
architecture='two-stage',
|
1299 |
+
output_activation='sigmoid',
|
1300 |
+
noise=DropBlockNoise(rate=0.1, block_size=16),
|
1301 |
+
pretrain_weights=None,
|
1302 |
+
block_type='pixel-shuffle',
|
1303 |
+
kernel_initializer='glorot_uniform',
|
1304 |
+
C=1.)
|
1305 |
+
|
1306 |
+
restore_model = dcgan.generator
|
1307 |
+
|
1308 |
+
restore_model.load_weights("./weights_gae/gan_efficientunet_full_augment-hist_equal_generator.h5")
|
1309 |
+
restore_model.trainable = False
|
1310 |
+
|
1311 |
+
def show_image(image, title='Image', cmap_type='gray'):
|
1312 |
+
plt.imshow(image, cmap=cmap_type)
|
1313 |
+
plt.title(title)
|
1314 |
+
plt.axis('off')
|
1315 |
+
plt.show()
|
1316 |
+
|
1317 |
+
|
1318 |
+
# đảo màu những ảnh bị ngược màu
|
1319 |
+
def remove_negative(img):
|
1320 |
+
outside = np.mean(img[ : , 0])
|
1321 |
+
inside = np.mean(img[ : , int(IMAGE_SIZE / 2)])
|
1322 |
+
if outside < inside:
|
1323 |
+
return img
|
1324 |
+
else:
|
1325 |
+
return 1 - img
|
1326 |
+
|
1327 |
+
# lựa chọn tiền xử lý: ảnh gốc, Equalization histogram, CLAHE
|
1328 |
+
def preprocess(img):
|
1329 |
+
img = remove_negative(img)
|
1330 |
+
|
1331 |
+
img = exposure.equalize_hist(img)
|
1332 |
+
img = exposure.equalize_adapthist(img)
|
1333 |
+
img = exposure.equalize_hist(img)
|
1334 |
+
return img
|
1335 |
+
|
1336 |
+
|
1337 |
+
# dilate contour
|
1338 |
+
def dilate(mask_img):
|
1339 |
+
kernel_size = 2 * 20 + 1
|
1340 |
+
kernel = np.ones((kernel_size, kernel_size), dtype=np.uint8)
|
1341 |
+
return ndimage.binary_dilation(mask_img == 0, structure=kernel)
|
1342 |
+
|
1343 |
+
# Tiêu đề của ứng dụng
|
1344 |
+
st.title("Tải và hiển thị ảnh")
|
1345 |
+
|
1346 |
+
# Hiển thị widget tải tệp tin ảnh
|
1347 |
+
uploaded_file = st.file_uploader("Chọn một tệp tin ảnh", type=["jpg", "jpeg", "png"])
|
1348 |
+
|
1349 |
+
if uploaded_file is not None:
|
1350 |
+
# Đọc dữ liệu ảnh từ tệp tin tải lên
|
1351 |
+
mask = seg(uploaded_file)
|
1352 |
+
|
1353 |
+
|
1354 |
+
|
1355 |
+
# Sử dụng Matplotlib để đọc và hiển thị ảnh C
|
1356 |
+
img = plt.imread(uploaded_file, 0)
|
1357 |
+
img = np.array(Image.fromarray(img).resize((224, 224)))
|
1358 |
+
img = preprocess(img)
|
1359 |
+
|
1360 |
+
# Hiển thị ảnh gốc
|
1361 |
+
show_image(img, title="Original image")
|
1362 |
+
plt.axis('off')
|
1363 |
+
st.pyplot()
|
1364 |
+
|
1365 |
+
|
1366 |
+
|
1367 |
+
uc, lc = get_contours_v2(mask, verbose=1)
|
1368 |
+
# img = cv2.imread(filepath)
|
1369 |
+
mask = np.zeros((640, 640)).astype('uint8')
|
1370 |
+
mask = draw_points(mask, lc, thickness=1, color=(255, 255, 255))
|
1371 |
+
mask = draw_points(mask, uc, thickness=1, color=(255, 255, 255))
|
1372 |
+
mask = cv2.resize(mask, (224, 224), cv2.INTER_NEAREST)
|
1373 |
+
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
1374 |
+
mask = mask / 255.
|
1375 |
+
|
1376 |
+
show_image(mask, title = "Contour")
|
1377 |
+
plt.axis('off')
|
1378 |
+
st.pyplot()
|
1379 |
+
# sử dụng equalization histogram
|
1380 |
+
mask = 1 - mask
|
1381 |
+
dilated = gaussian(dilate(mask), sigma=50, truncate=0.2)
|
1382 |
+
|
1383 |
+
im = np.expand_dims(img * (1 - dilated), axis=0)
|
1384 |
+
im = tf.convert_to_tensor(im, dtype=tf.float32)
|
1385 |
+
|
1386 |
+
restored_img = restore_model(im)
|
1387 |
+
|
1388 |
+
res = tf.squeeze(tf.squeeze(restored_img, axis=-1), axis=0)
|
1389 |
+
|
1390 |
+
show_image(im[0], title="Masked Image")
|
1391 |
+
plt.axis('off')
|
1392 |
+
st.pyplot()
|
1393 |
+
|
1394 |
+
show_image(res, title="Reconstructed image")
|
1395 |
+
plt.axis('off')
|
1396 |
+
st.pyplot()
|
1397 |
+
|
1398 |
+
show_image(dilated*tf.abs(img-res), title="Anomaly map", cmap_type='turbo')
|
1399 |
+
plt.axis('off')
|
1400 |
+
st.pyplot()
|
1401 |
+
|
1402 |
+
|
1403 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
keras-core
|
2 |
+
tensorflow
|
3 |
+
tensorflow-addons
|
4 |
+
tf-clahe
|
5 |
+
opencv-python
|
6 |
+
tf_clahe
|
7 |
+
numpy
|
8 |
+
pandas
|
9 |
+
array-record
|
10 |
+
tqdm
|
11 |
+
keras_cv~=0.5.0
|
12 |
+
scipy
|
13 |
+
matplotlib
|
14 |
+
scikit-image
|
15 |
+
scikit-learn
|
16 |
+
ultralytics
|
17 |
+
streamlit
|
18 |
+
Pillow
|
weights_gae/.gitattributes
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
weights_gae/gan_efficientunet_full_augment-hist_equal_generator.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6f23b0e3b9bd3f7a860b4c213ea7c99b4d7d17ebf1f56f7dd39c37e73e1c0f8
|
3 |
+
size 230002208
|
weights_yolo/oai_s_best4.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0159a91db899213c34db9cc93db1b5a31576eb3b78eb61bd1d9a29a4ef92e843
|
3 |
+
size 6771320
|