GMARTINEZMILLA commited on
Commit
e0fd3d2
·
1 Parent(s): 9e9b5c6

feat: updated website

Browse files
Files changed (1) hide show
  1. app.py +4 -1
app.py CHANGED
@@ -273,6 +273,7 @@ elif page == "Customer Analysis":
273
  # Load the Corresponding Model
274
  model_path = f'models/modelo_cluster_{cluster}.txt'
275
  gbm = lgb.Booster(model_file=model_path)
 
276
 
277
  with st.spinner("Getting the data ready..."):
278
  # Load predict data for that cluster
@@ -280,12 +281,14 @@ elif page == "Customer Analysis":
280
 
281
  # Convert cliente_id to string
282
  predict_data['cliente_id'] = predict_data['cliente_id'].astype(str)
 
283
 
284
  with st.spinner("Filtering data..."):
285
 
286
  # Filter for the specific customer
287
  customer_code_str = str(customer_code)
288
  customer_data = predict_data[predict_data['cliente_id'] == customer_code_str]
 
289
 
290
  with st.spinner("Generating sales predictions..."):
291
 
@@ -331,7 +334,7 @@ elif page == "Customer Analysis":
331
  rmse = np.sqrt(mean_squared_error(valid_results['ventas_reales'], valid_results['ventas_predichas']))
332
 
333
  st.write(f"Actual total sales for Customer {customer_code}: {valid_results['ventas_reales'].sum():.2f}")
334
- st.write(f"MAE: {mae:.2f}")
335
  st.write(f"MAPE: {mape:.2f}%")
336
  st.write(f"RMSE: {rmse:.2f}")
337
 
 
273
  # Load the Corresponding Model
274
  model_path = f'models/modelo_cluster_{cluster}.txt'
275
  gbm = lgb.Booster(model_file=model_path)
276
+ time.sleep(1)
277
 
278
  with st.spinner("Getting the data ready..."):
279
  # Load predict data for that cluster
 
281
 
282
  # Convert cliente_id to string
283
  predict_data['cliente_id'] = predict_data['cliente_id'].astype(str)
284
+ time.sleep(1)
285
 
286
  with st.spinner("Filtering data..."):
287
 
288
  # Filter for the specific customer
289
  customer_code_str = str(customer_code)
290
  customer_data = predict_data[predict_data['cliente_id'] == customer_code_str]
291
+ time.sleep(1)
292
 
293
  with st.spinner("Generating sales predictions..."):
294
 
 
334
  rmse = np.sqrt(mean_squared_error(valid_results['ventas_reales'], valid_results['ventas_predichas']))
335
 
336
  st.write(f"Actual total sales for Customer {customer_code}: {valid_results['ventas_reales'].sum():.2f}")
337
+ st.write(f"MAE: {mae:.2f}")
338
  st.write(f"MAPE: {mape:.2f}%")
339
  st.write(f"RMSE: {rmse:.2f}")
340