ppsingh's picture
restore
fba1e90
raw
history blame
2.42 kB
import re
import logging
import json
from langchain.schema import (
HumanMessage,
SystemMessage,
)
def save_logs(scheduler, JSON_DATASET_PATH, logs) -> None:
""" Every interaction with app saves the log of question and answer,
this is to get the usage statistics of app and evaluate model performances
"""
with scheduler.lock:
with JSON_DATASET_PATH.open("a") as f:
json.dump(logs, f)
f.write("\n")
print("logging done")
def get_message_template(type, SYSTEM_PROMPT, USER_PROMPT):
if type == 'NVIDIA':
messages = [{"role": "system", "content": SYSTEM_PROMPT},
{"role":"user","content":USER_PROMPT}]
elif type == 'DEDICATED':
messages = [
SystemMessage(content=SYSTEM_PROMPT),
HumanMessage(content=USER_PROMPT),]
else:
messages = None
return messages
def make_html_source(source,i):
"""
takes the text and converts it into html format for display in "source" side tab
"""
meta = source.metadata
content = source.page_content.strip()
name = meta['subtype']
card = f"""
<div class="card" id="doc{i}">
<div class="card-content">
<h2>Doc {i} - {meta['subtype']} - Page {int(meta['page'])}</h2>
<p>{content}</p>
</div>
<div class="card-footer">
<span>{subtype}</span>
<a href="{meta['subtype']}#page={int(meta['page'])}" target="_blank" class="pdf-link">
<span role="img" aria-label="Open PDF">🔗</span>
</a>
</div>
</div>
"""
return card
def parse_output_llm_with_sources(output):
# Split the content into a list of text and "[Doc X]" references
content_parts = re.split(r'\[(Doc\s?\d+(?:,\s?Doc\s?\d+)*)\]', output)
parts = []
for part in content_parts:
if part.startswith("Doc"):
subparts = part.split(",")
subparts = [subpart.lower().replace("doc","").strip() for subpart in subparts]
subparts = [f"""<a href="#doc{subpart}" class="a-doc-ref" target="_self"><span class='doc-ref'><sup>{subpart}</sup></span></a>""" for subpart in subparts]
parts.append("".join(subparts))
else:
parts.append(part)
content_parts = "".join(parts)
return content_parts