File size: 12,037 Bytes
e13ca11
2e537f7
 
 
 
 
 
 
eac3e5b
3248077
723ac7e
c4bb3a1
723ac7e
 
 
 
 
 
 
 
d5a9071
 
 
 
 
 
6fb73c4
 
 
 
723ac7e
 
 
d5a9071
 
 
 
 
 
 
 
 
 
 
 
723ac7e
d5a9071
 
 
 
723ac7e
 
 
 
1075df3
723ac7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc219ee
723ac7e
 
 
 
 
 
 
 
 
 
 
 
 
 
1075df3
 
d5a9071
723ac7e
 
 
 
 
8e5f4a1
 
 
 
 
 
 
 
 
 
 
 
 
723ac7e
8e5f4a1
 
723ac7e
b006b7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5a9071
 
 
 
e461efe
 
 
 
 
 
 
6216345
 
 
 
 
 
 
 
 
 
e461efe
d5a9071
 
e461efe
2e537f7
 
a7b80ba
2e537f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d26ce45
2e537f7
 
 
22666cd
2e537f7
22666cd
2e537f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4739ff2
2e537f7
 
 
 
 
4739ff2
2e537f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

import gradio as gr
import pandas as pd
import numpy as np
import os
import time
import re
import json
from auditqa.sample_questions import QUESTIONS
from auditqa.reports import POSSIBLE_REPORTS
from auditqa.engine.prompts import audience_prompts, answer_prompt_template
from auditqa.doc_process import process_pdf
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain.llms import HuggingFaceEndpoint
from dotenv import load_dotenv
load_dotenv()

HF_token = os.environ["HF_TOKEN"]
vectorstores = process_pdf()

async def chat(query,history,audience,sources,reports):
    """taking a query and a message history, use a pipeline (reformulation, retriever, answering) to yield a tuple of:
    (messages in gradio format, messages in langchain format, source documents)"""

    print(f">> NEW QUESTION : {query}")
    print(f"history:{history}")
    print(f"audience:{audience}")
    print(f"sources:{sources}")
    print(f"reports:{reports}")
    docs_html = ""
    output_query = ""
    output_language = "english"

    if audience == "Children":
        audience_prompt = audience_prompts["children"]
    elif audience == "General public":
        audience_prompt = audience_prompts["general"]
    elif audience == "Experts":
        audience_prompt = audience_prompts["experts"]
    else:
        audience_prompt = audience_prompts["experts"]

    # Prepare default values
    if len(sources) == 0:
        sources = ["ABC"]

    if len(reports) == 0:
        reports = []

    if sources == ["ABC"]:
        vectorstore = vectorstores["ABC"]
    else:
        vectorstore = vectorstores["XYZ"]

# get context   
    context_retrieved_lst = []
    question_lst= [query]
    for question in question_lst:
        retriever = vectorstore.as_retriever(
          search_type="similarity",
          search_kwargs={"k": 1})

        context_retrieved = retriever.get_relevant_documents(question)

        def format_docs(docs):
            return "\n\n".join(doc.page_content for doc in docs)

        context_retrieved_formatted = format_docs(context_retrieved)
        context_retrieved_lst.append(context_retrieved_formatted)
    
    
# get prompt
    prompt = ChatPromptTemplate.from_template(answer_prompt_template)

# get llm
    llm_qa = HuggingFaceEndpoint(
      endpoint_url= "https://fesg9gjsfde5yfr4.us-east-1.aws.endpoints.huggingface.cloud",
      task="text-generation",
      huggingfacehub_api_token=HF_token,
      model_kwargs={})
    
# create rag chain
    chain = prompt | llm_qa | StrOutputParser()
# get answers
    answer_lst = []
    for question, context in zip(question_lst , context_retrieved_lst):
        answer = chain.invoke({"context": context, "question": question,'audience':audience_prompt, 'language':'english'})
        answer_lst.append(answer)
    docs_html = []
    for i, d in enumerate(context_retrieved, 1):
        docs_html.append(make_html_source(d, i))
    docs_html = "".join(docs_html)

    previous_answer = history[-1][1]
    previous_answer = previous_answer if previous_answer is not None else ""
    answer_yet = previous_answer + answer_lst[0]
    answer_yet = parse_output_llm_with_sources(answer_yet)
    history[-1] = (query,answer_yet)
    
    history = [tuple(x) for x in history]
    
    yield history,docs_html,output_query,output_language

def make_html_source(source,i):
    meta = source.metadata
    # content = source.page_content.split(":",1)[1].strip()
    content = source.page_content.strip()

    name = meta['source']
    card = f"""
        <div class="card" id="doc{i}">
            <div class="card-content">
                <h2>Doc {i} - {meta['file_path']} - Page {int(meta['page'])}</h2>
                <p>{content}</p>
            </div>
            <div class="card-footer">
                <span>{name}</span>
                <a href="{meta['file_path']}#page={int(meta['page'])}" target="_blank" class="pdf-link">
                    <span role="img" aria-label="Open PDF">🔗</span>
                </a>
            </div>
        </div>
        """

    return card

def parse_output_llm_with_sources(output):
    # Split the content into a list of text and "[Doc X]" references
    content_parts = re.split(r'\[(Doc\s?\d+(?:,\s?Doc\s?\d+)*)\]', output)
    parts = []
    for part in content_parts:
        if part.startswith("Doc"):
            subparts = part.split(",")
            subparts = [subpart.lower().replace("doc","").strip() for subpart in subparts]
            subparts = [f"""<a href="#doc{subpart}" class="a-doc-ref" target="_self"><span class='doc-ref'><sup>{subpart}</sup></span></a>""" for subpart in subparts]
            parts.append("".join(subparts))
        else:
            parts.append(part)
    content_parts = "".join(parts)
    return content_parts
# --------------------------------------------------------------------
# Gradio
# --------------------------------------------------------------------

# Set up Gradio Theme
theme = gr.themes.Base(
    primary_hue="blue",
    secondary_hue="red",
    font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
)

init_prompt = """
Hello, I am Audit Q&A, a conversational assistant designed to help you understand audit Reports. I will answer your questions by **crawling through the Audit reports publishsed by Auditor General Office**.
❓ How to use
- **Language**: You can ask me your questions in any language. 
- **Audience**: You can specify your audience (children, general public, experts) to get a more adapted answer.
- **Sources**: You can choose to search in the Annual or District or Department focused reports, or all.
⚠️ Limitations
*Please note that the AI is not perfect and may sometimes give irrelevant answers. If you are not satisfied with the answer, please ask a more specific question or report your feedback to help us improve the system.*
What do you want to learn ?
"""


# Setting Tabs
with gr.Blocks(title="Audit Q&A", css="style.css", theme=theme,elem_id = "main-component") as demo:
    # user_id_state = gr.State([user_id])

    with gr.Tab("AuditQ&A"):

        with gr.Row(elem_id="chatbot-row"):
            with gr.Column(scale=2):
                # state = gr.State([system_template])
                chatbot = gr.Chatbot(
                    value=[(None,init_prompt)],
                    show_copy_button=True,show_label = False,elem_id="chatbot",layout = "panel",
                    avatar_images = (None,"https://i.ibb.co/YNyd5W2/logo4.png"),
                )#,avatar_images = ("assets/logo4.png",None))
                
                # bot.like(vote,None,None)



                with gr.Row(elem_id = "input-message"):
                    textbox=gr.Textbox(placeholder="Ask me anything here!",show_label=False,scale=7,lines = 1,interactive = True,elem_id="input-textbox")
                    # submit = gr.Button("",elem_id = "submit-button",scale = 1,interactive = True,icon = "https://static-00.iconduck.com/assets.00/settings-icon-2048x2046-cw28eevx.png")


            with gr.Column(scale=1, variant="panel",elem_id = "right-panel"):


                with gr.Tabs() as tabs:
                    with gr.TabItem("Examples",elem_id = "tab-examples",id = 0):
                                        
                        examples_hidden = gr.Textbox(visible = False)
                        first_key = list(QUESTIONS.keys())[0]
                        dropdown_samples = gr.Dropdown(QUESTIONS.keys(),value = first_key,interactive = True,show_label = True,label = "Select a category of sample questions",elem_id = "dropdown-samples")

                        samples = []
                        for i,key in enumerate(QUESTIONS.keys()):

                            examples_visible = True if i == 0 else False

                            with gr.Row(visible = examples_visible) as group_examples:

                                examples_questions = gr.Examples(
                                    QUESTIONS[key],
                                    [examples_hidden],
                                    examples_per_page=8,
                                    run_on_click=False,
                                    elem_id=f"examples{i}",
                                    api_name=f"examples{i}",
                                    # label = "Click on the example question or enter your own",
                                    # cache_examples=True,
                                )
                            
                            samples.append(group_examples)


                    with gr.Tab("Sources",elem_id = "tab-citations",id = 1):
                        sources_textbox = gr.HTML(show_label=False, elem_id="sources-textbox")
                        docs_textbox = gr.State("")

                    # with Modal(visible = False) as config_modal:
                    with gr.Tab("Configuration",elem_id = "tab-config",id = 2):

                        gr.Markdown("Reminder: You can talk in any language, Audit Q&A is multi-lingual!")


                        dropdown_sources = gr.CheckboxGroup(
                            ["ABC", "XYZ"],
                            label="Select source",
                            value=["ABC"],
                            interactive=True,
                        )

                        dropdown_reports = gr.Dropdown(
                            POSSIBLE_REPORTS,
                            label="Or select specific reports",
                            multiselect=True,
                            value=None,
                            interactive=True,
                        )

                        dropdown_audience = gr.Dropdown(
                            ["Children","General public","Experts"],
                            label="Select audience",
                            value="Experts",
                            interactive=True,
                        )

                        output_query = gr.Textbox(label="Query used for retrieval",show_label = True,elem_id = "reformulated-query",lines = 2,interactive = False)
                        output_language = gr.Textbox(label="Language",show_label = True,elem_id = "language",lines = 1,interactive = False)

    with gr.Tab("About",elem_classes = "max-height other-tabs"):
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("See more info at [https://www.oag.go.ug/](https://www.oag.go.ug/welcome)")
    
    
    def start_chat(query,history):
        history = history + [(query,None)]
        history = [tuple(x) for x in history]
        return (gr.update(interactive = False),gr.update(selected=1),history)
    
    def finish_chat():
        return (gr.update(interactive = True,value = ""))

    (textbox
        .submit(start_chat, [textbox,chatbot], [textbox,tabs,chatbot],queue = False,api_name = "start_chat_textbox")
        .then(chat, [textbox,chatbot,dropdown_audience, dropdown_sources,dropdown_reports], [chatbot,sources_textbox,output_query,output_language],concurrency_limit = 8,api_name = "chat_textbox")
        .then(finish_chat, None, [textbox],api_name = "finish_chat_textbox")
    )

    (examples_hidden
        .change(start_chat, [examples_hidden,chatbot], [textbox,tabs,chatbot],queue = False,api_name = "start_chat_examples")
        .then(chat, [examples_hidden,chatbot,dropdown_audience, dropdown_sources,dropdown_reports], [chatbot,sources_textbox,output_query,output_language],concurrency_limit = 8,api_name = "chat_examples")
        .then(finish_chat, None, [textbox],api_name = "finish_chat_examples")
    )


    def change_sample_questions(key):
        index = list(QUESTIONS.keys()).index(key)
        visible_bools = [False] * len(samples)
        visible_bools[index] = True
        return [gr.update(visible=visible_bools[i]) for i in range(len(samples))]



    dropdown_samples.change(change_sample_questions,dropdown_samples,samples)

    demo.queue()

demo.launch()