File size: 2,771 Bytes
04f287e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
857b56b
3b6480c
 
 
857b56b
3b6480c
 
 
 
 
 
04f287e
3b6480c
5ded842
 
347dbcf
 
5ded842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04f287e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import glob
import os
from langchain.text_splitter import RecursiveCharacterTextSplitter, SentenceTransformersTokenTextSplitter
from transformers import AutoTokenizer
from torch import cuda
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings, HuggingFaceInferenceAPIEmbeddings
from langchain_community.vectorstores import Qdrant
from auditqa.reports import files, report_list
device = 'cuda' if cuda.is_available() else 'cpu'
#from dotenv import load_dotenv
#load_dotenv()

#HF_token = os.environ["HF_TOKEN"]
path_to_data = "./data/pdf/"

def process_pdf():
    docs = {}
    for file in report_list:
        try:
            docs[file] = PyMuPDFLoader(path_to_data + file + '.pdf').load()
        except Exception as e:
            print("Exception: ", e)

    # text splitter based on the tokenizer of a model of your choosing
    # to make texts fit exactly a transformer's context window size
    # langchain text splitters: https://python.langchain.com/docs/modules/data_connection/document_transformers/
    chunk_size = 256
    text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
            AutoTokenizer.from_pretrained("BAAI/bge-small-en-v1.5"),
            chunk_size=chunk_size,
            chunk_overlap=10,
            add_start_index=True,
            strip_whitespace=True,
            separators=["\n\n", "\n"],
    )
    all_documents = {}
    categories = list(files.keys())
    for category in categories:
        print(category)
        all_documents[category] = []
        subtypes = list(files[category].keys())
        for subtype in subtypes:
            print(subtype)
            for file in files[category][subtype]:
                doc_processed = text_splitter.split_documents(docs[file])
                for doc in doc_processed:
                    doc.metadata["source"] = category
                    doc.metadata["subtype"] = subtype
                    doc.metadata["year"] = file[-4:]

                all_documents[category].append(doc_processed)

    for key, docs_processed in all_documents.items():
        docs_processed = [item for sublist in docs_processed for item in sublist]
        all_documents[key] = docs_processed

    embeddings = HuggingFaceEmbeddings(
        model_kwargs = {'device': device},
        encode_kwargs = {'normalize_embeddings': True},
        model_name="BAAI/bge-small-en-v1.5"
    )

    qdrant_collections = {}

    for file,value in all_documents.items():
    print("emebddings for:",file)
    qdrant_collections[file] = Qdrant.from_documents(
        value,
        embeddings,
        location=":memory:", 
        collection_name=file,
    )
    print("done")
    return qdrant_collections