Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -23,20 +23,10 @@ DEDICATED_ENDPOINT = "https://qu2d8m6dmsollhly.us-east-1.aws.endpoints.huggingfa
|
|
23 |
WRITE_ACCESS_TOKEN = st.secrets["Llama_3_1"]
|
24 |
|
25 |
def get_rag_answer(query, top_results):
|
26 |
-
"""
|
27 |
-
Constructs a prompt from the query and the page contexts of the top results,
|
28 |
-
truncates the context to avoid exceeding the token limit, then sends it to the
|
29 |
-
dedicated endpoint and returns only the generated answer.
|
30 |
-
"""
|
31 |
-
# Combine the context from the top results (adjust the separator as needed)
|
32 |
context = "\n\n".join([res.payload["page_content"] for res in top_results])
|
33 |
-
|
34 |
-
# Truncate the context to a maximum number of characters (e.g., 12000 characters)
|
35 |
max_context_chars = 15000
|
36 |
if len(context) > max_context_chars:
|
37 |
context = context[:max_context_chars]
|
38 |
-
|
39 |
-
# Build the prompt, instructing the model to only output the final answer.
|
40 |
prompt = (
|
41 |
"Using the following context, answer the question concisely. "
|
42 |
"Only output the final answer below, without repeating the context or question.\n\n"
|
@@ -44,37 +34,29 @@ def get_rag_answer(query, top_results):
|
|
44 |
f"Question: {query}\n\n"
|
45 |
"Answer:"
|
46 |
)
|
47 |
-
|
48 |
headers = {"Authorization": f"Bearer {WRITE_ACCESS_TOKEN}"}
|
49 |
payload = {
|
50 |
"inputs": prompt,
|
51 |
-
"parameters": {
|
52 |
-
"max_new_tokens": 150 # Adjust max tokens as needed
|
53 |
-
}
|
54 |
}
|
55 |
-
|
56 |
response = requests.post(DEDICATED_ENDPOINT, headers=headers, json=payload)
|
57 |
if response.status_code == 200:
|
58 |
result = response.json()
|
59 |
answer = result[0]["generated_text"]
|
60 |
-
# If the model returns the full prompt, split and extract only the portion after "Answer:"
|
61 |
if "Answer:" in answer:
|
62 |
answer = answer.split("Answer:")[-1].strip()
|
63 |
return answer
|
64 |
else:
|
65 |
return f"Error in generating answer: {response.text}"
|
66 |
|
67 |
-
|
68 |
-
#######
|
69 |
-
# Helper function: Format project id (e.g., "201940485" -> "2019.4048.5")
|
70 |
def format_project_id(pid):
|
71 |
s = str(pid)
|
72 |
if len(s) > 5:
|
73 |
return s[:4] + "." + s[4:-1] + "." + s[-1]
|
74 |
return s
|
75 |
|
76 |
-
|
77 |
-
# Helper function: Compute title from metadata using name.en (or name.de if empty)
|
78 |
def compute_title(metadata):
|
79 |
name_en = metadata.get("name.en", "").strip()
|
80 |
name_de = metadata.get("name.de", "").strip()
|
@@ -84,7 +66,7 @@ def compute_title(metadata):
|
|
84 |
return f"{base} [{format_project_id(pid)}]"
|
85 |
return base or "No Title"
|
86 |
|
87 |
-
# Helper
|
88 |
@st.cache_data
|
89 |
def get_crs_options(_client, collection_name):
|
90 |
results = hybrid_search(_client, "", collection_name)
|
@@ -99,8 +81,7 @@ def get_crs_options(_client, collection_name):
|
|
99 |
crs_set.add(crs_combined)
|
100 |
return sorted(crs_set)
|
101 |
|
102 |
-
|
103 |
-
# Update filter_results to also filter by crs_combined.
|
104 |
def filter_results(results, country_filter, region_filter, end_year_range, crs_filter):
|
105 |
filtered = []
|
106 |
for r in results:
|
@@ -128,30 +109,32 @@ def filter_results(results, country_filter, region_filter, end_year_range, crs_f
|
|
128 |
else:
|
129 |
countries_in_region = c_list
|
130 |
|
131 |
-
# Filter by CRS: compute crs_combined and compare to the selected filter.
|
132 |
crs_key = metadata.get("crs_key", "").strip()
|
133 |
crs_value = metadata.get("crs_value", "").strip()
|
134 |
crs_combined = f"{crs_key}: {crs_value}" if (crs_key or crs_value) else ""
|
135 |
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
if ((country_filter == "All/Not allocated" or selected_iso_code in c_list)
|
140 |
and (region_filter == "All/Not allocated" or countries_in_region)
|
141 |
-
and
|
142 |
filtered.append(r)
|
143 |
return filtered
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
# get the device to be used eithe gpu or cpu
|
148 |
device = 'cuda' if cuda.is_available() else 'cpu'
|
149 |
|
150 |
-
|
151 |
-
st.set_page_config(page_title="SEARCH IATI",layout='wide')
|
152 |
st.title("GIZ Project Database (PROTOTYPE)")
|
153 |
var = st.text_input("Enter Search Question")
|
154 |
|
|
|
155 |
# Load the region lookup CSV
|
156 |
region_lookup_path = "docStore/regions_lookup.csv"
|
157 |
region_df = load_region_data(region_lookup_path)
|
@@ -196,14 +179,19 @@ def get_country_name_and_region_mapping(_client, collection_name, region_df):
|
|
196 |
|
197 |
client = get_client()
|
198 |
country_name_mapping, iso_code_to_sub_region = get_country_name_and_region_mapping(client, collection_name, region_df)
|
199 |
-
unique_country_names = sorted(country_name_mapping.keys())
|
200 |
|
201 |
-
# Layout filters in columns
|
202 |
col1, col2, col3, col4 = st.columns([1, 1, 1, 4])
|
203 |
with col1:
|
204 |
region_filter = st.selectbox("Region", ["All/Not allocated"] + sorted(unique_sub_regions))
|
|
|
|
|
|
|
|
|
|
|
205 |
with col2:
|
206 |
-
country_filter = st.selectbox("Country", ["All/Not allocated"] + filtered_country_names
|
207 |
with col3:
|
208 |
current_year = datetime.now().year
|
209 |
default_start_year = current_year - 4
|
@@ -212,46 +200,32 @@ with col4:
|
|
212 |
crs_options = ["All/Not allocated"] + get_crs_options(client, collection_name)
|
213 |
crs_filter = st.selectbox("CRS", crs_options)
|
214 |
|
215 |
-
# Checkbox
|
216 |
show_exact_matches = st.checkbox("Show only exact matches", value=False)
|
217 |
|
218 |
-
|
219 |
-
|
220 |
-
# Run the search
|
221 |
-
|
222 |
-
# 1) Adjust limit so we get more than 15 results
|
223 |
-
results = hybrid_search(client, var, collection_name, limit=500) # e.g., 100 or 200
|
224 |
-
|
225 |
-
# results is a tuple: (semantic_results, lexical_results)
|
226 |
semantic_all = results[0]
|
227 |
lexical_all = results[1]
|
228 |
|
229 |
-
|
230 |
-
|
231 |
-
r for r in semantic_all if len(r.payload["page_content"]) >= 5
|
232 |
-
]
|
233 |
-
lexical_all = [
|
234 |
-
r for r in lexical_all if len(r.payload["page_content"]) >= 5
|
235 |
-
]
|
236 |
|
237 |
-
# 2) Apply a threshold to SEMANTIC results (score >= 0.4)
|
238 |
semantic_thresholded = [r for r in semantic_all if r.score >= 0.0]
|
239 |
|
240 |
-
|
241 |
filtered_semantic = filter_results(semantic_thresholded, country_filter, region_filter, end_year_range, crs_filter)
|
242 |
filtered_lexical = filter_results(lexical_all, country_filter, region_filter, end_year_range, crs_filter)
|
243 |
-
|
|
|
244 |
filtered_lexical_no_dupe = remove_duplicates(filtered_lexical)
|
245 |
|
246 |
-
# Define a helper function to format currency values
|
247 |
def format_currency(value):
|
248 |
try:
|
249 |
-
# Convert to float then int for formatting (assumes whole numbers)
|
250 |
return f"鈧瑊int(float(value)):,}"
|
251 |
except (ValueError, TypeError):
|
252 |
return value
|
253 |
-
|
254 |
-
# Helper
|
255 |
def highlight_query(text, query):
|
256 |
pattern = re.compile(re.escape(query), re.IGNORECASE)
|
257 |
return pattern.sub(lambda m: f"**{m.group(0)}**", text)
|
@@ -275,15 +249,12 @@ if show_exact_matches:
|
|
275 |
st.divider()
|
276 |
for res in top_results:
|
277 |
metadata = res.payload.get('metadata', {})
|
278 |
-
# Compute new title if not already set
|
279 |
if "title" not in metadata:
|
280 |
metadata["title"] = compute_title(metadata)
|
281 |
-
# Use new title instead of project_name and highlight query if present
|
282 |
display_title = highlight_query(metadata["title"], var) if var.strip() else metadata["title"]
|
283 |
proj_id = metadata.get('id', 'Unknown')
|
284 |
st.markdown(f"#### {display_title} [{proj_id}]")
|
285 |
|
286 |
-
# Build snippet with potential highlighting
|
287 |
objectives = metadata.get("objectives", "")
|
288 |
desc_de = metadata.get("description.de", "")
|
289 |
desc_en = metadata.get("description.en", "")
|
@@ -299,13 +270,11 @@ if show_exact_matches:
|
|
299 |
with st.expander("Show more"):
|
300 |
st.write(remainder_text)
|
301 |
|
302 |
-
# Keywords
|
303 |
full_text = res.payload['page_content']
|
304 |
top_keywords = extract_top_keywords(full_text, top_n=5)
|
305 |
if top_keywords:
|
306 |
st.markdown(f"_{' 路 '.join(top_keywords)}_")
|
307 |
|
308 |
-
# Country info
|
309 |
try:
|
310 |
c_list = json.loads(metadata.get('countries', "[]").replace("'", '"'))
|
311 |
except json.JSONDecodeError:
|
@@ -318,7 +287,6 @@ if show_exact_matches:
|
|
318 |
matched_countries.append(resolved_name)
|
319 |
|
320 |
additional_text = f"Country: **{', '.join(matched_countries) if matched_countries else 'Unknown'}**"
|
321 |
-
# Add contact info if available and not [email protected]
|
322 |
contact = metadata.get("contact", "").strip()
|
323 |
if contact and contact.lower() != "[email protected]":
|
324 |
additional_text += f" | Contact: **{contact}**"
|
@@ -380,7 +348,6 @@ else:
|
|
380 |
additional_text += f" | Contact: **{contact}**"
|
381 |
st.markdown(additional_text)
|
382 |
st.divider()
|
383 |
-
|
384 |
# for i in results:
|
385 |
# st.subheader(str(i.metadata['id'])+":"+str(i.metadata['title_main']))
|
386 |
# st.caption(f"Status:{str(i.metadata['status'])}, Country:{str(i.metadata['country_name'])}")
|
|
|
23 |
WRITE_ACCESS_TOKEN = st.secrets["Llama_3_1"]
|
24 |
|
25 |
def get_rag_answer(query, top_results):
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
context = "\n\n".join([res.payload["page_content"] for res in top_results])
|
|
|
|
|
27 |
max_context_chars = 15000
|
28 |
if len(context) > max_context_chars:
|
29 |
context = context[:max_context_chars]
|
|
|
|
|
30 |
prompt = (
|
31 |
"Using the following context, answer the question concisely. "
|
32 |
"Only output the final answer below, without repeating the context or question.\n\n"
|
|
|
34 |
f"Question: {query}\n\n"
|
35 |
"Answer:"
|
36 |
)
|
|
|
37 |
headers = {"Authorization": f"Bearer {WRITE_ACCESS_TOKEN}"}
|
38 |
payload = {
|
39 |
"inputs": prompt,
|
40 |
+
"parameters": {"max_new_tokens": 150}
|
|
|
|
|
41 |
}
|
|
|
42 |
response = requests.post(DEDICATED_ENDPOINT, headers=headers, json=payload)
|
43 |
if response.status_code == 200:
|
44 |
result = response.json()
|
45 |
answer = result[0]["generated_text"]
|
|
|
46 |
if "Answer:" in answer:
|
47 |
answer = answer.split("Answer:")[-1].strip()
|
48 |
return answer
|
49 |
else:
|
50 |
return f"Error in generating answer: {response.text}"
|
51 |
|
52 |
+
# Helper: Format project id (e.g., "201940485" -> "2019.4048.5")
|
|
|
|
|
53 |
def format_project_id(pid):
|
54 |
s = str(pid)
|
55 |
if len(s) > 5:
|
56 |
return s[:4] + "." + s[4:-1] + "." + s[-1]
|
57 |
return s
|
58 |
|
59 |
+
# Helper: Compute title from metadata using name.en (or name.de if empty)
|
|
|
60 |
def compute_title(metadata):
|
61 |
name_en = metadata.get("name.en", "").strip()
|
62 |
name_de = metadata.get("name.de", "").strip()
|
|
|
66 |
return f"{base} [{format_project_id(pid)}]"
|
67 |
return base or "No Title"
|
68 |
|
69 |
+
# Helper: Get CRS filter options from all documents
|
70 |
@st.cache_data
|
71 |
def get_crs_options(_client, collection_name):
|
72 |
results = hybrid_search(_client, "", collection_name)
|
|
|
81 |
crs_set.add(crs_combined)
|
82 |
return sorted(crs_set)
|
83 |
|
84 |
+
# Revised filter_results: Allow missing end_year or CRS; enforce CRS only when present.
|
|
|
85 |
def filter_results(results, country_filter, region_filter, end_year_range, crs_filter):
|
86 |
filtered = []
|
87 |
for r in results:
|
|
|
109 |
else:
|
110 |
countries_in_region = c_list
|
111 |
|
|
|
112 |
crs_key = metadata.get("crs_key", "").strip()
|
113 |
crs_value = metadata.get("crs_value", "").strip()
|
114 |
crs_combined = f"{crs_key}: {crs_value}" if (crs_key or crs_value) else ""
|
115 |
|
116 |
+
# Only enforce CRS filter if result has a CRS value.
|
117 |
+
if crs_filter != "All/Not allocated" and crs_combined:
|
118 |
+
if crs_filter != crs_combined:
|
119 |
+
continue
|
120 |
+
|
121 |
+
# Allow projects with no valid end_year to pass (if end_year_val is 0)
|
122 |
+
year_ok = True if end_year_val == 0 else (end_year_range[0] <= end_year_val <= end_year_range[1])
|
123 |
|
124 |
+
if ((country_filter == "All/Not allocated" or (selected_iso_code and selected_iso_code in c_list))
|
125 |
and (region_filter == "All/Not allocated" or countries_in_region)
|
126 |
+
and year_ok):
|
127 |
filtered.append(r)
|
128 |
return filtered
|
129 |
|
130 |
+
# Get the device to be used (GPU or CPU)
|
|
|
|
|
131 |
device = 'cuda' if cuda.is_available() else 'cpu'
|
132 |
|
133 |
+
st.set_page_config(page_title="SEARCH IATI", layout='wide')
|
|
|
134 |
st.title("GIZ Project Database (PROTOTYPE)")
|
135 |
var = st.text_input("Enter Search Question")
|
136 |
|
137 |
+
|
138 |
# Load the region lookup CSV
|
139 |
region_lookup_path = "docStore/regions_lookup.csv"
|
140 |
region_df = load_region_data(region_lookup_path)
|
|
|
179 |
|
180 |
client = get_client()
|
181 |
country_name_mapping, iso_code_to_sub_region = get_country_name_and_region_mapping(client, collection_name, region_df)
|
182 |
+
unique_country_names = sorted(country_name_mapping.keys())
|
183 |
|
184 |
+
# Layout filters in columns
|
185 |
col1, col2, col3, col4 = st.columns([1, 1, 1, 4])
|
186 |
with col1:
|
187 |
region_filter = st.selectbox("Region", ["All/Not allocated"] + sorted(unique_sub_regions))
|
188 |
+
# Compute filtered_country_names based on region_filter:
|
189 |
+
if region_filter == "All/Not allocated":
|
190 |
+
filtered_country_names = unique_country_names
|
191 |
+
else:
|
192 |
+
filtered_country_names = [name for name, code in country_name_mapping.items() if iso_code_to_sub_region.get(code) == region_filter]
|
193 |
with col2:
|
194 |
+
country_filter = st.selectbox("Country", ["All/Not allocated"] + filtered_country_names)
|
195 |
with col3:
|
196 |
current_year = datetime.now().year
|
197 |
default_start_year = current_year - 4
|
|
|
200 |
crs_options = ["All/Not allocated"] + get_crs_options(client, collection_name)
|
201 |
crs_filter = st.selectbox("CRS", crs_options)
|
202 |
|
203 |
+
# Checkbox for exact matches
|
204 |
show_exact_matches = st.checkbox("Show only exact matches", value=False)
|
205 |
|
206 |
+
# Run the search
|
207 |
+
results = hybrid_search(client, var, collection_name, limit=500)
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
semantic_all = results[0]
|
209 |
lexical_all = results[1]
|
210 |
|
211 |
+
semantic_all = [r for r in semantic_all if len(r.payload["page_content"]) >= 5]
|
212 |
+
lexical_all = [r for r in lexical_all if len(r.payload["page_content"]) >= 5]
|
|
|
|
|
|
|
|
|
|
|
213 |
|
|
|
214 |
semantic_thresholded = [r for r in semantic_all if r.score >= 0.0]
|
215 |
|
|
|
216 |
filtered_semantic = filter_results(semantic_thresholded, country_filter, region_filter, end_year_range, crs_filter)
|
217 |
filtered_lexical = filter_results(lexical_all, country_filter, region_filter, end_year_range, crs_filter)
|
218 |
+
|
219 |
+
filtered_semantic_no_dupe = remove_duplicates(filtered_semantic)
|
220 |
filtered_lexical_no_dupe = remove_duplicates(filtered_lexical)
|
221 |
|
|
|
222 |
def format_currency(value):
|
223 |
try:
|
|
|
224 |
return f"鈧瑊int(float(value)):,}"
|
225 |
except (ValueError, TypeError):
|
226 |
return value
|
227 |
+
|
228 |
+
# Helper to highlight query matches (case-insensitive)
|
229 |
def highlight_query(text, query):
|
230 |
pattern = re.compile(re.escape(query), re.IGNORECASE)
|
231 |
return pattern.sub(lambda m: f"**{m.group(0)}**", text)
|
|
|
249 |
st.divider()
|
250 |
for res in top_results:
|
251 |
metadata = res.payload.get('metadata', {})
|
|
|
252 |
if "title" not in metadata:
|
253 |
metadata["title"] = compute_title(metadata)
|
|
|
254 |
display_title = highlight_query(metadata["title"], var) if var.strip() else metadata["title"]
|
255 |
proj_id = metadata.get('id', 'Unknown')
|
256 |
st.markdown(f"#### {display_title} [{proj_id}]")
|
257 |
|
|
|
258 |
objectives = metadata.get("objectives", "")
|
259 |
desc_de = metadata.get("description.de", "")
|
260 |
desc_en = metadata.get("description.en", "")
|
|
|
270 |
with st.expander("Show more"):
|
271 |
st.write(remainder_text)
|
272 |
|
|
|
273 |
full_text = res.payload['page_content']
|
274 |
top_keywords = extract_top_keywords(full_text, top_n=5)
|
275 |
if top_keywords:
|
276 |
st.markdown(f"_{' 路 '.join(top_keywords)}_")
|
277 |
|
|
|
278 |
try:
|
279 |
c_list = json.loads(metadata.get('countries', "[]").replace("'", '"'))
|
280 |
except json.JSONDecodeError:
|
|
|
287 |
matched_countries.append(resolved_name)
|
288 |
|
289 |
additional_text = f"Country: **{', '.join(matched_countries) if matched_countries else 'Unknown'}**"
|
|
|
290 |
contact = metadata.get("contact", "").strip()
|
291 |
if contact and contact.lower() != "[email protected]":
|
292 |
additional_text += f" | Contact: **{contact}**"
|
|
|
348 |
additional_text += f" | Contact: **{contact}**"
|
349 |
st.markdown(additional_text)
|
350 |
st.divider()
|
|
|
351 |
# for i in results:
|
352 |
# st.subheader(str(i.metadata['id'])+":"+str(i.metadata['title_main']))
|
353 |
# st.caption(f"Status:{str(i.metadata['status'])}, Country:{str(i.metadata['country_name'])}")
|