prashant
ver0.2 udfpreprocess update
49a314a
raw
history blame
6.27 kB
import glob, os, sys; sys.path.append('../udfPreprocess')
#import helper
import udfPreprocess.docPreprocessing as pre
import udfPreprocess.cleaning as clean
#import needed libraries
import seaborn as sns
from pandas import DataFrame
from sentence_transformers import SentenceTransformer, CrossEncoder, util
# from keybert import KeyBERT
from transformers import pipeline
import matplotlib.pyplot as plt
import numpy as np
import streamlit as st
import pandas as pd
from rank_bm25 import BM25Okapi
from sklearn.feature_extraction import _stop_words
import string
from tqdm.autonotebook import tqdm
import numpy as np
import docx
from docx.shared import Inches
from docx.shared import Pt
from docx.enum.style import WD_STYLE_TYPE
import logging
logger = logging.getLogger(__name__)
import tempfile
import sqlite3
import configparser
### These are lexcial search related functions/methods#####
def bm25_tokenizer(text):
tokenized_doc = []
for token in text.lower().split():
token = token.strip(string.punctuation)
if len(token) > 0 and token not in _stop_words.ENGLISH_STOP_WORDS:
tokenized_doc.append(token)
return tokenized_doc
def bm25TokenizeDoc(paraList):
tokenized_corpus = []
##########Commenting this for now########### will incorporate paragrpah splitting later.
# for passage in tqdm(paraList):
# if len(passage.split()) >256:
# # st.write("Splitting")
# temp = " ".join(passage.split()[:256])
# tokenized_corpus.append(bm25_tokenizer(temp))
# temp = " ".join(passage.split()[256:])
# tokenized_corpus.append(bm25_tokenizer(temp))
# else:
# tokenized_corpus.append(bm25_tokenizer(passage))
######################################################################################33333
for passage in tqdm(paraList):
tokenized_corpus.append(bm25_tokenizer(passage))
return tokenized_corpus
def lexical_search(keyword, document_bm25):
config = configparser.ConfigParser()
config.read_file(open('udfPreprocess/paramconfig.cfg'))
top_k = int(config.get('lexical_search','TOP_K'))
bm25_scores = document_bm25.get_scores(bm25_tokenizer(keyword))
top_n = np.argpartition(bm25_scores, -top_k)[-top_k:]
bm25_hits = [{'corpus_id': idx, 'score': bm25_scores[idx]} for idx in top_n]
bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True)
return bm25_hits
@st.cache(allow_output_mutation=True)
def load_sentenceTransformer(name):
return SentenceTransformer(name)
def semantic_search(keywordlist,paraList):
##### Sematic Search #####
#query = "Does document contain {} issues ?".format(keyword)
config = configparser.ConfigParser()
config.read_file(open('udfPreprocess/paramconfig.cfg'))
model_name = config.get('semantic_search','MODEL_NAME')
bi_encoder = load_sentenceTransformer(model_name)
bi_encoder.max_seq_length = int(config.get('semantic_search','MAX_SEQ_LENGTH')) #Truncate long passages to 256 tokens
top_k = int(config.get('semantic_search','TOP_K'))
document_embeddings = bi_encoder.encode(paraList, convert_to_tensor=True, show_progress_bar=False)
question_embedding = bi_encoder.encode(keywordlist, convert_to_tensor=True)
hits = util.semantic_search(question_embedding, document_embeddings, top_k=top_k)
return hits
def show_results(keywordList):
document = docx.Document()
# document.add_heading('Document name:{}'.format(file_name), 2)
section = document.sections[0]
# Calling the footer
footer = section.footer
# Calling the paragraph already present in
# the footer section
footer_para = footer.paragraphs[0]
font_styles = document.styles
font_charstyle = font_styles.add_style('CommentsStyle', WD_STYLE_TYPE.CHARACTER)
font_object = font_charstyle.font
font_object.size = Pt(7)
# Adding the centered zoned footer
footer_para.add_run('''\tPowered by GIZ Data and the Sustainable Development Solution Network hosted at Hugging-Face spaces: https://huggingface.co/spaces/ppsingh/streamlit_dev''', style='CommentsStyle')
document.add_heading('Your Seacrhed for {}'.format(keywordList), level=1)
for keyword in keywordList:
st.write("Results for Query: {}".format(keyword))
para = document.add_paragraph().add_run("Results for Query: {}".format(keyword))
para.font.size = Pt(12)
bm25_hits, hits = search(keyword)
st.markdown("""
We will provide with 2 kind of results. The 'lexical search' and the semantic search.
""")
# In the semantic search part we provide two kind of results one with only Retriever (Bi-Encoder) and other the ReRanker (Cross Encoder)
st.markdown("Top few lexical search (BM25) hits")
document.add_paragraph("Top few lexical search (BM25) hits")
for hit in bm25_hits[0:5]:
if hit['score'] > 0.00:
st.write("\t Score: {:.3f}: \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " ")))
document.add_paragraph("\t Score: {:.3f}: \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " ")))
# st.table(bm25_hits[0:3])
st.markdown("\n-------------------------\n")
st.markdown("Top few Bi-Encoder Retrieval hits")
document.add_paragraph("\n-------------------------\n")
document.add_paragraph("Top few Bi-Encoder Retrieval hits")
hits = sorted(hits, key=lambda x: x['score'], reverse=True)
for hit in hits[0:5]:
# if hit['score'] > 0.45:
st.write("\t Score: {:.3f}: \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " ")))
document.add_paragraph("\t Score: {:.3f}: \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " ")))