File size: 4,916 Bytes
22b8e0b
72e4dad
570b6e4
22b8e0b
 
 
 
 
 
8c4c590
 
 
72e4dad
4df35da
570b6e4
72e4dad
 
 
 
 
22b8e0b
 
 
 
 
 
 
72e4dad
22b8e0b
 
 
570b6e4
 
 
 
72e4dad
22b8e0b
 
 
d3cc512
fb4cce0
e836bc5
72e4dad
fb4cce0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e836bc5
fb4cce0
 
 
 
8c4c590
72e4dad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# set path
import glob, os, sys; 
sys.path.append('../utils')

#import needed libraries
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import streamlit as st
import docx
from docx.shared import Inches
from docx.shared import Pt
from docx.enum.style import WD_STYLE_TYPE
from utils.sdg_classifier import sdg_classification
from utils.sdg_classifier import runSDGPreprocessingPipeline
import logging
logger = logging.getLogger(__name__)



def app():

    with st.container():
        st.markdown("<h1 style='text-align: center; color: black;'> SDSN x GIZ Policy Action Tracking v0.1</h1>", unsafe_allow_html=True)
        st.write(' ')
        st.write(' ')

    with st.expander("ℹ️ - About this app", expanded=False):

        st.write(
            """     
            The *Analyse Policy Document* app is an easy-to-use interface built \
                in Streamlit for analyzing policy documents with respect to SDG \
                 Classification for the paragraphs/texts in the document - \
                developed by GIZ Data and the Sustainable Development Solution Network. \n
            """)
        st.markdown("")


    with st.container():
        if st.button("RUN SDG Analysis"):
       
            
            if 'filepath' in st.session_state:
                allDocuments = runSDGPreprocessingPipeline(st.session_state['filepath'],
                                                            st.session_state['filename'])
                if len(allDocuments['documents']) > 100:
                    warning_msg = ": This might take sometime, please sit back and relax."
                else:
                    warning_msg = ""

                with st.spinner("Running SDG Classification{}".format(warning_msg)):

                    df, x = sdg_classification(allDocuments['documents'])

                    plt.rcParams['font.size'] = 25
                    colors = plt.get_cmap('Blues')(np.linspace(0.2, 0.7, len(x)))
                    # plot
                    fig, ax = plt.subplots()
                    ax.pie(x, colors=colors, radius=2, center=(4, 4),
                        wedgeprops={"linewidth": 1, "edgecolor": "white"}, 
                        frame=False,labels =list(x.index))
                    # fig.savefig('temp.png', bbox_inches='tight',dpi= 100)
                    st.markdown("#### Anything related to SDGs? ####")

                    c4, c5, c6 = st.columns([2, 2, 2])

                    with c5:
                        st.pyplot(fig)
                        
                    c7, c8, c9 = st.columns([1, 10, 1])
                    with c8:
                        st.table(df)
            else:
                st.info("🤔 No document found, please try to upload it at the sidebar!")
                logging.warning("Terminated as no document provided")




#     1. Keyword heatmap \n
 #               2. SDG Classification for the paragraphs/texts in the document
 #       
    
    # with st.container():
    #     if 'docs' in st.session_state:
    #         docs = st.session_state['docs']
    #         docs_processed, df, all_text, par_list = clean.preprocessingForSDG(docs)
    #         # paraList = st.session_state['paraList']
    #         logging.info("keybert")
    #         with st.spinner("Running Key bert"):

    #             kw_model = load_keyBert()

    #             keywords = kw_model.extract_keywords(
    #             all_text,
    #             keyphrase_ngram_range=(1, 3),
    #             use_mmr=True,
    #             stop_words="english",
    #             top_n=10,
    #             diversity=0.7,
    #             )

    #             st.markdown("## 🎈 What is my document about?")
            
    #             df = (
    #                 DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"])
    #                 .sort_values(by="Relevancy", ascending=False)
    #                 .reset_index(drop=True)
    #             )
    #             df1 = (
    #                 DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"])
    #                 .sort_values(by="Relevancy", ascending=False)
    #                 .reset_index(drop=True)
    #             )
    #             df.index += 1

    #             # Add styling
    #             cmGreen = sns.light_palette("green", as_cmap=True)
    #             cmRed = sns.light_palette("red", as_cmap=True)
    #             df = df.style.background_gradient(
    #                 cmap=cmGreen,
    #                 subset=[
    #                     "Relevancy",
    #                 ],
    #             )

    #             c1, c2, c3 = st.columns([1, 3, 1])

    #             format_dictionary = {
    #                 "Relevancy": "{:.1%}",
    #             }

    #             df = df.format(format_dictionary)

    #             with c2:
    #  
    #               st.table(df)