File size: 12,365 Bytes
22b8e0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c4c590
 
 
 
 
22b8e0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c4c590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22b8e0b
 
8c4c590
22b8e0b
 
8c4c590
22b8e0b
8c4c590
 
 
 
 
 
 
 
 
 
22b8e0b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# set path
import glob, os, sys; sys.path.append('../udfPreprocess')

#import helper
import udfPreprocess.docPreprocessing as pre
import udfPreprocess.cleaning as clean

#import needed libraries
import seaborn as sns
from pandas import DataFrame
from sentence_transformers import SentenceTransformer, CrossEncoder, util
from sklearn.metrics.pairwise import cosine_similarity
# from keybert import KeyBERT
from transformers import pipeline
import matplotlib.pyplot as plt
import numpy as np
import streamlit as st
import pandas as pd 
from rank_bm25 import BM25Okapi
from sklearn.feature_extraction import _stop_words
import string
from tqdm.autonotebook import tqdm
import numpy as np
import urllib.request
import ast
import tempfile
import sqlite3
import json
import urllib.request
import ast
import docx
from docx.shared import Inches
from docx.shared import Pt
from docx.enum.style import WD_STYLE_TYPE 

def app():
    # Sidebar
    st.sidebar.title('Check Coherence')
    st.sidebar.write(' ')
    with open('ndcs/countryList.txt') as dfile:
        countryList = dfile.read()

    countryList = ast.literal_eval(countryList)
    countrynames = list(countryList.keys())
    
    option = st.sidebar.selectbox('Select Country', (countrynames))
    countryCode = countryList[option]


    with st.container():
        st.markdown("<h1 style='text-align: center; color: black;'> Check Coherence of Policy Document with NDCs</h1>", unsafe_allow_html=True)
        st.write(' ')
        st.write(' ')

    with st.expander("ℹ️ - About this app", expanded=True):

        st.write(
            """     
            The *Check Coherence* app is an easy-to-use interface built in Streamlit for doing analysis of policy document and finding the coherence between NDCs/New-Updated NDCs- developed by GIZ Data and the Sustainable Development Solution Network.
            """
        )

        st.markdown("")

    st.markdown("")
    st.markdown("##  📌 Step One: Upload document of the country selected ")
    
    with st.container():
            docs = None
            # asking user for either upload or select existing doc
            choice = st.radio(label = 'Select the Document',
                              help = 'You can upload the document \
                              or else you can try a example document.', 
                              options = ('Upload Document', 'Try Example'), 
                              horizontal = True)

            if choice == 'Upload Document':
              uploaded_file = st.file_uploader('Upload the File', type=['pdf', 'docx', 'txt'])
              if uploaded_file is not None:
                with tempfile.NamedTemporaryFile(mode="wb") as temp:
                    bytes_data = uploaded_file.getvalue()
                    temp.write(bytes_data)

                    st.write("Uploaded Filename: ", uploaded_file.name)
                    file_name =  uploaded_file.name
                    file_path = temp.name
                    docs = pre.load_document(file_path, file_name)
                    haystackDoc, dataframeDoc, textData, paraList = clean.preprocessing(docs)

            else:
              # listing the options
              option = st.selectbox('Select the example document',
                                    ('South Africa:Low Emission strategy', 
                                    'Ethiopia: 10 Year Development Plan'))
              if option is 'South Africa:Low Emission strategy':
                file_name = file_path  = 'sample/South Africa_s Low Emission Development Strategy.txt'
                countryCode = countryList['South Africa']
                st.write("Selected document:", file_name.split('/')[1])
                # with open('sample/South Africa_s Low Emission Development Strategy.txt') as dfile:
                # file = open('sample/South Africa_s Low Emission Development Strategy.txt', 'wb')
              else:
                # with open('sample/Ethiopia_s_2021_10 Year Development Plan.txt') as dfile:
                file_name = file_path =  'sample/Ethiopia_s_2021_10 Year Development Plan.txt'
                countryCode = countryList['Ethiopia']
                st.write("Selected document:", file_name.split('/')[1])
              
              if option is not None:
                docs = pre.load_document(file_path,file_name)
                haystackDoc, dataframeDoc, textData, paraList = clean.preprocessing(docs)

            with open('ndcs/cca.txt', encoding='utf-8', errors='ignore') as dfile:
                cca_sent = dfile.read()

            cca_sent = ast.literal_eval(cca_sent)
            
            with open('ndcs/ccm.txt', encoding='utf-8', errors='ignore') as dfile:
                ccm_sent = dfile.read()

            ccm_sent = ast.literal_eval(ccm_sent)
            
            with open('ndcs/countryList.txt') as dfile:
                countryList = dfile.read()

            countryList = ast.literal_eval(countryList)
            
            def get_document(countryCode: str):
                link = "https://klimalog.die-gdi.de/ndc/open-data/dataset.json"  
                with urllib.request.urlopen(link) as urlfile:
                    data =  json.loads(urlfile.read())
                categoriesData = {}
                categoriesData['categories']= data['categories']
                categoriesData['subcategories']= data['subcategories']
                keys_sub = categoriesData['subcategories'].keys()
                documentType= 'NDCs'
                if documentType in data.keys():
                    if countryCode in data[documentType].keys():
                        get_dict = {}
                        for key, value in data[documentType][countryCode].items():
                            if key not in ['country_name','region_id', 'region_name']:
                                get_dict[key] = value['classification']
                            else:
                                get_dict[key] = value
                    else:
                        return None
                else:
                    return None

                country = {}
                for key in categoriesData['categories']:
                    country[key]= {}
                for key,value in categoriesData['subcategories'].items():
                    country[value['category']][key] = get_dict[key]
                
                return country
        
        #   country_ndc = get_document('NDCs', countryList[option])
            
            def countrySpecificCCA(cca_sent, threshold, countryCode):
                temp = {}
                doc = get_document(countryCode)
                for key,value in cca_sent.items():
                    id_ = doc['climate change adaptation'][key]['id']
                    if id_ >threshold:
                        temp[key] = value['id'][id_]
                return temp
            
                
            def countrySpecificCCM(ccm_sent, threshold, countryCode):
                temp = {}
                doc = get_document(countryCode)
                for key,value in ccm_sent.items():
                    id_ = doc['climate change mitigation'][key]['id']
                    if id_ >threshold:
                        temp[key] = value['id'][id_]
                
                return temp

        
        
            if docs is not None:
                    sent_cca = countrySpecificCCA(cca_sent,1,countryCode)
                    sent_ccm = countrySpecificCCM(ccm_sent,1,countryCode)
                    #st.write(sent_ccm)
                    @st.cache(allow_output_mutation=True)
                    def load_sentenceTransformer(name):
                        return SentenceTransformer(name)
                    model = load_sentenceTransformer('all-MiniLM-L6-v2')
          
                    document_embeddings = model.encode(paraList, show_progress_bar=True)
                
                    genre = st.radio( "Select Category",('Climate Change Adaptation', 'Climate Change Mitigation'))
                    if genre == 'Climate Change Adaptation':
                        sent_dict = sent_cca
                        sent_labels = []
                        for key,sent in sent_dict.items():
                            sent_labels.append(sent)
                        label_embeddings = model.encode(sent_labels, show_progress_bar=True)
                        similarity_high_threshold = 0.55
                        similarity_matrix = cosine_similarity(label_embeddings, document_embeddings)
                        label_indices, paragraph_indices = np.where(similarity_matrix>similarity_high_threshold)

                        positive_indices = list(zip(label_indices.tolist(), paragraph_indices.tolist()))
                        
                        
                    else:
                        sent_dict = sent_ccm
                        sent_labels = []
                        for key,sent in sent_dict.items():
                            sent_labels.append(sent)
                        label_embeddings = model.encode(sent_labels, show_progress_bar=True)
                        similarity_high_threshold = 0.55
                        similarity_matrix = cosine_similarity(label_embeddings, document_embeddings)
                        label_indices, paragraph_indices = np.where(similarity_matrix>similarity_high_threshold)

                        positive_indices = list(zip(label_indices.tolist(), paragraph_indices.tolist()))
                        
            
                #    sent_labels = []
                #   for key,sent in sent_dict.items():
                  #      sent_labels.append(sent)
                    
            
                  # label_embeddings = model.encode(sent_labels, show_progress_bar=True)
            
                    #similarity_high_threshold = 0.55
                  # similarity_matrix = cosine_similarity(label_embeddings, document_embeddings)
                    #label_indices, paragraph_indices = np.where(similarity_matrix>similarity_high_threshold)

                    #positive_indices = list(zip(label_indices.tolist(), paragraph_indices.tolist()))
                    document = docx.Document()
                    document.add_heading('Document name:{}'.format(file_name), 2)
                    section = document.sections[0]

                      # Calling the footer
                    footer = section.footer
                    
                    # Calling the paragraph already present in
                    # the footer section
                    footer_para = footer.paragraphs[0]
                    
                    font_styles = document.styles
                    font_charstyle = font_styles.add_style('CommentsStyle', WD_STYLE_TYPE.CHARACTER)
                    font_object = font_charstyle.font
                    font_object.size = Pt(7)
                    # Adding the centered zoned footer
                    footer_para.add_run('''\tPowered by GIZ Data and the Sustainable Development Solution Network hosted at Hugging-Face spaces:                        https://huggingface.co/spaces/ppsingh/streamlit_dev''', style='CommentsStyle')
                    
                    document.add_paragraph("Country Code for which NDC is carried out {}".format(countryCode))
                    
                    for _label_idx, _paragraph_idx in positive_indices:
                        st.write("This paragraph: \n")
                        document.add_paragraph("This paragraph: \n")
                        st.write(paraList[_paragraph_idx])
                        st.write(f"Is relevant to: \n {list(sent_dict.keys())[_label_idx]}")
                        document.add_paragraph(f"Is relevant to: \n {list(sent_dict.keys())[_label_idx]}")
                        st.write('-'*10)
                        document.add_paragraph('-'*10)
                    
                    document.save('demo.docx')
                    with open("demo.docx", "rb") as file:
                                btn = st.download_button(
                                label="Download file",
                                data=file,
                                file_name="demo.docx",
                                mime="txt/docx"
                                  )