File size: 6,271 Bytes
49a314a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import glob, os, sys; sys.path.append('../udfPreprocess')

#import helper
import udfPreprocess.docPreprocessing as pre
import udfPreprocess.cleaning as clean

#import needed libraries
import seaborn as sns
from pandas import DataFrame
from sentence_transformers import SentenceTransformer, CrossEncoder, util
# from keybert import KeyBERT
from transformers import pipeline
import matplotlib.pyplot as plt
import numpy as np
import streamlit as st
import pandas as pd 
from rank_bm25 import BM25Okapi
from sklearn.feature_extraction import _stop_words
import string
from tqdm.autonotebook import tqdm
import numpy as np
import docx
from docx.shared import Inches
from docx.shared import Pt
from docx.enum.style import WD_STYLE_TYPE 
import logging
logger = logging.getLogger(__name__)
import tempfile
import sqlite3
import configparser

### These are lexcial search related functions/methods#####

def bm25_tokenizer(text):
    tokenized_doc = []
    for token in text.lower().split():
        token = token.strip(string.punctuation)

        if len(token) > 0 and token not in _stop_words.ENGLISH_STOP_WORDS:
            tokenized_doc.append(token)
    return tokenized_doc
    
def bm25TokenizeDoc(paraList):
    tokenized_corpus = []
    ##########Commenting this for now########### will incorporate paragrpah splitting later.
    # for passage in tqdm(paraList):
        # if len(passage.split()) >256:
        #     # st.write("Splitting")
        #     temp  = " ".join(passage.split()[:256])
        #     tokenized_corpus.append(bm25_tokenizer(temp))
        #     temp  = " ".join(passage.split()[256:])
        #     tokenized_corpus.append(bm25_tokenizer(temp))
        # else:
        #     tokenized_corpus.append(bm25_tokenizer(passage))
    ######################################################################################33333
    for passage in tqdm(paraList):
        tokenized_corpus.append(bm25_tokenizer(passage))    

    return tokenized_corpus

def lexical_search(keyword, document_bm25):
    config = configparser.ConfigParser()
    config.read_file(open('udfPreprocess/paramconfig.cfg'))
    top_k = int(config.get('lexical_search','TOP_K'))
    bm25_scores = document_bm25.get_scores(bm25_tokenizer(keyword))
    top_n = np.argpartition(bm25_scores, -top_k)[-top_k:]
    bm25_hits = [{'corpus_id': idx, 'score': bm25_scores[idx]} for idx in top_n]
    bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True)
    return bm25_hits

@st.cache(allow_output_mutation=True)
def load_sentenceTransformer(name):
    return SentenceTransformer(name)


def semantic_search(keywordlist,paraList):
    
    ##### Sematic Search #####
    #query = "Does document contain {} issues ?".format(keyword)
    config = configparser.ConfigParser()
    config.read_file(open('udfPreprocess/paramconfig.cfg'))
    model_name = config.get('semantic_search','MODEL_NAME')

    bi_encoder = load_sentenceTransformer(model_name)
    bi_encoder.max_seq_length = int(config.get('semantic_search','MAX_SEQ_LENGTH'))     #Truncate long passages to 256 tokens
    top_k = int(config.get('semantic_search','TOP_K'))  
    document_embeddings = bi_encoder.encode(paraList, convert_to_tensor=True, show_progress_bar=False)
    question_embedding = bi_encoder.encode(keywordlist, convert_to_tensor=True)

    hits = util.semantic_search(question_embedding, document_embeddings, top_k=top_k)
    
    return hits

def show_results(keywordList):
            document = docx.Document()
            # document.add_heading('Document name:{}'.format(file_name), 2)
            section = document.sections[0]

           # Calling the footer
            footer = section.footer
        
            # Calling the paragraph already present in
        # the footer section
            footer_para = footer.paragraphs[0]
        
            font_styles = document.styles
            font_charstyle = font_styles.add_style('CommentsStyle', WD_STYLE_TYPE.CHARACTER)
            font_object = font_charstyle.font
            font_object.size = Pt(7)
        # Adding the centered zoned footer
            footer_para.add_run('''\tPowered by GIZ Data and the Sustainable Development Solution Network hosted at Hugging-Face spaces: https://huggingface.co/spaces/ppsingh/streamlit_dev''', style='CommentsStyle')
            document.add_heading('Your Seacrhed for {}'.format(keywordList), level=1)
            for keyword in keywordList:
          
              st.write("Results for Query: {}".format(keyword))
              para = document.add_paragraph().add_run("Results for Query: {}".format(keyword))
              para.font.size = Pt(12)
              bm25_hits, hits = search(keyword)     

              st.markdown("""
                      We will provide with 2 kind of results. The 'lexical search' and the semantic search. 
                      """)  
              # In the semantic search part we provide two kind of results one with only Retriever (Bi-Encoder) and other the ReRanker (Cross Encoder)           
              st.markdown("Top few lexical search (BM25) hits")
              document.add_paragraph("Top few lexical search (BM25) hits")

              for hit in bm25_hits[0:5]:
                  if hit['score'] > 0.00:   
                      st.write("\t Score: {:.3f}:  \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " ")))
                      document.add_paragraph("\t Score: {:.3f}:  \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " ")))
          
        
        
        #   st.table(bm25_hits[0:3])
          
              st.markdown("\n-------------------------\n")
              st.markdown("Top few Bi-Encoder Retrieval hits")
              document.add_paragraph("\n-------------------------\n")
              document.add_paragraph("Top few Bi-Encoder Retrieval hits")

              hits = sorted(hits, key=lambda x: x['score'], reverse=True)
              for hit in hits[0:5]:
                #  if hit['score'] > 0.45:
                  st.write("\t Score: {:.3f}:  \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " ")))
                  document.add_paragraph("\t Score: {:.3f}:  \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " ")))