File size: 6,776 Bytes
63da636 a4bf4e8 4a20529 49a314a 4a20529 cc5c327 a4bf4e8 cc5c327 a4bf4e8 49a314a 4a20529 78f3ebc 49a314a 63da636 49a314a 63da636 cc5c327 63da636 4a20529 63da636 cc5c327 63da636 4a20529 63da636 4a20529 63da636 cc5c327 63da636 cc5c327 1d3978a a4bf4e8 1d3978a a4bf4e8 1d3978a a4bf4e8 1d3978a 2bccbcb 1d3978a a4bf4e8 63da636 a4bf4e8 8e83ccf a4bf4e8 40cb026 63da636 a4bf4e8 63da636 a4bf4e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
from haystack.nodes import TransformersQueryClassifier
from haystack.nodes import EmbeddingRetriever, FARMReader
from haystack.nodes.base import BaseComponent
from haystack.document_stores import InMemoryDocumentStore
import configparser
import streamlit as st
from markdown import markdown
from annotated_text import annotation
from haystack.schema import Document
from typing import List, Text
from utils.preprocessing import processingpipeline
from haystack.pipelines import Pipeline
config = configparser.ConfigParser()
config.read_file(open('paramconfig.cfg'))
class QueryCheck(BaseComponent):
outgoing_edges = 1
def run(self, query):
query_classifier = TransformersQueryClassifier(model_name_or_path=
"shahrukhx01/bert-mini-finetune-question-detection")
result = query_classifier.run(query=query)
if result[1] == "output_1":
output = {"query":query,
"query_type": 'question/statement'}
else:
output = {"query": "find all issues related to {}".format(query),
"query_type": 'statements/keyword'}
return output, "output_1"
def run_batch(self, query):
pass
def runSemanticPreprocessingPipeline()->List[Document]:
"""
creates the pipeline and runs the preprocessing pipeline,
the params for pipeline are fetched from paramconfig
Return
--------------
List[Document]: When preprocessing pipeline is run, the output dictionary
has four objects. For the Haysatck implementation of semantic search we,
need to use the List of Haystack Document, which can be fetched by
key = 'documents' on output.
"""
file_path = st.session_state['filepath']
file_name = st.session_state['filename']
semantic_processing_pipeline = processingpipeline()
split_by = config.get('semantic_search','SPLIT_BY')
split_length = int(config.get('semantic_search','SPLIT_LENGTH'))
split_overlap = int(config.get('semantic_search','SPLIT_OVERLAP'))
output_semantic_pre = semantic_processing_pipeline.run(file_paths = file_path,
params= {"FileConverter": {"file_path": file_path, \
"file_name": file_name},
"UdfPreProcessor": {"removePunc": False, \
"split_by": split_by, \
"split_length":split_length,\
"split_overlap": split_overlap}})
return output_semantic_pre['documents']
def semanticSearchPipeline(documents, show_answers = False):
document_store = InMemoryDocumentStore()
document_store.write_documents(documents)
embedding_model = config.get('semantic_search','RETRIEVER')
embedding_model_format = config.get('semantic_search','RETRIEVER_FORMAT')
embedding_layer = int(config.get('semantic_search','RETRIEVER_EMB_LAYER'))
retriever_top_k = int(config.get('semantic_search','RETRIEVER_TOP_K'))
querycheck = QueryCheck()
retriever = EmbeddingRetriever(
document_store=document_store,
embedding_model=embedding_model,top_k = retriever_top_k,
emb_extraction_layer=embedding_layer, scale_score =True,
model_format=embedding_model_format, use_gpu = True)
document_store.update_embeddings(retriever)
semanticsearch_pipeline = Pipeline()
semanticsearch_pipeline.add_node(component = querycheck, name = "QueryCheck",
inputs = ["Query"])
semanticsearch_pipeline.add_node(component = retriever, name = "EmbeddingRetriever",
inputs = ["QueryCheck.output_1"])
if show_answers == True:
reader_model = config.get('semantic_search','READER')
reader_top_k = retriever_top_k
reader = FARMReader(model_name_or_path=reader_model,
top_k = reader_top_k, use_gpu=True)
semanticsearch_pipeline.add_node(component = reader, name = "FARMReader",
inputs= ["EmbeddingRetriever"])
return semanticsearch_pipeline, document_store
def semanticsearchAnnotator(matches: List[List[int]], document):
"""
Annotates the text in the document defined by list of [start index, end index]
Example: "How are you today", if document type is text, matches = [[0,3]]
will give answer = "How", however in case we used the spacy matcher then the
matches = [[0,3]] will give answer = "How are you". However if spacy is used
to find "How" then the matches = [[0,1]] for the string defined above.
"""
start = 0
annotated_text = ""
for match in matches:
start_idx = match[0]
end_idx = match[1]
annotated_text = (annotated_text + document[start:start_idx].text
+ str(annotation(body=document[start_idx:end_idx].text,
label="ANSWER", background="#964448", color='#ffffff')))
start = end_idx
annotated_text = annotated_text + document[end_idx:].text
st.write(
markdown(annotated_text),
unsafe_allow_html=True,
)
def semantic_search(query:Text,documents:List[Document],show_answers = False):
"""
Performs the Lexical search on the List of haystack documents which is
returned by preprocessing Pipeline.
"""
threshold = 0.4
semanticsearch_pipeline, doc_store = semanticSearchPipeline(documents,
show_answers=show_answers)
results = semanticsearch_pipeline.run(query = query)
if show_answers == False:
results = results['documents']
for i,queryhit in enumerate(results):
if queryhit.score > threshold:
st.write("\t {}: \t {}".format(i+1, queryhit.content.replace("\n", " ")))
st.markdown("---")
else:
for answer in results['answers']:
st.write(answer)
# matches = []
# doc = []
if answer.score >0.01:
temp = answer.to_dict()
start_idx = temp['offsets_in_document'][0]['start']
end_idx = temp['offsets_in_document'][0]['end']
# matches.append([start_idx,end_idx])
# doc.append(doc_store.get_document_by_id(temp['document_id']).content)
match = [[start_idx,end_idx]]
doc = doc_store.get_document_by_id(temp['document_id']).content
semanticsearchAnnotator(match,doc)
|