File size: 5,826 Bytes
22b8e0b
72e4dad
 
22b8e0b
 
 
 
 
 
 
 
 
 
 
 
 
8c4c590
 
 
 
72e4dad
 
22b8e0b
 
 
72e4dad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22b8e0b
 
 
 
 
 
 
 
72e4dad
22b8e0b
 
 
72e4dad
 
22b8e0b
 
 
72e4dad
22b8e0b
 
72e4dad
 
 
 
 
22b8e0b
72e4dad
22b8e0b
 
72e4dad
22b8e0b
72e4dad
 
 
 
 
 
 
 
 
22b8e0b
 
 
 
 
 
 
72e4dad
 
 
 
22b8e0b
2d65499
22b8e0b
 
 
 
72e4dad
 
 
 
 
 
22b8e0b
72e4dad
 
 
22b8e0b
72e4dad
22b8e0b
a48c117
22b8e0b
a48c117
1346116
a48c117
593bc97
8c4c590
72e4dad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# set path
import glob, os, sys; 
sys.path.append('../udfPreprocess')

#import helper
import udfPreprocess.docPreprocessing as pre
import udfPreprocess.cleaning as clean

#import needed libraries
import seaborn as sns
from pandas import DataFrame
from keybert import KeyBERT
from transformers import pipeline
import matplotlib.pyplot as plt
import numpy as np
import streamlit as st
import pandas as pd
import docx
from docx.shared import Inches
from docx.shared import Pt
from docx.enum.style import WD_STYLE_TYPE
from udfPreprocess.sdg import sdg_classification

import tempfile
import sqlite3
import logging
logger = logging.getLogger(__name__)



@st.cache(allow_output_mutation=True)
def load_keyBert():
    return KeyBERT()

@st.cache(allow_output_mutation=True)
def load_sdgClassifier():
    classifier = pipeline("text-classification", model= "jonas/sdg_classifier_osdg")
    return classifier



def app():

    with st.container():
        st.markdown("<h1 style='text-align: center; color: black;'> SDSN x GIZ Policy Action Tracking v0.1</h1>", unsafe_allow_html=True)
        st.write(' ')
        st.write(' ')

    with st.expander("ℹ️ - About this app", expanded=False):

        st.write(
            """     
            The *Analyse Policy Document* app is an easy-to-use interface built in Streamlit for analyzing policy documents with respect to SDG Classification for the paragraphs/texts in the document - developed by GIZ Data and the Sustainable Development Solution Network. \n
            """)
        st.markdown("")


    with st.container():
        

            
        if 'docs' in st.session_state:
            docs = st.session_state['docs']
            docs_processed, df, all_text, par_list = clean.preprocessingForSDG(docs)
            with st.spinner("Running SDG"):

                df, x = sdg_classification(par_list)


                # classifier = load_sdgClassifier()

                # labels = classifier(par_list)
                # labels_= [(l['label'],l['score']) for l in labels]
                # df2 = DataFrame(labels_, columns=["SDG", "Relevancy"])
                # df2['text'] = par_list      
                # df2 = df2.sort_values(by="Relevancy", ascending=False).reset_index(drop=True)  
                # df2.index += 1
                # df2 =df2[df2['Relevancy']>.85]
                # x = df2['SDG'].value_counts()
                # df3 = df2.copy()

                plt.rcParams['font.size'] = 25
                colors = plt.get_cmap('Blues')(np.linspace(0.2, 0.7, len(x)))
                # plot
                fig, ax = plt.subplots()
                ax.pie(x, colors=colors, radius=2, center=(4, 4),
                    wedgeprops={"linewidth": 1, "edgecolor": "white"}, frame=False,labels =list(x.index))
                # fig.savefig('temp.png', bbox_inches='tight',dpi= 100)
                st.markdown("#### Anything related to SDGs? ####")

                # st.markdown("#### 🎈 Anything related to SDGs? ####")

                c4, c5, c6 = st.columns([2, 2, 2])

                # Add styling
                cmGreen = sns.light_palette("green", as_cmap=True)
                cmRed = sns.light_palette("red", as_cmap=True)
                # df2 = df2.style.background_gradient(
                #     cmap=cmGreen,
                #     subset=[
                #         "Relevancy",
                #     ],
                # )

                # format_dictionary = {
                #     "Relevancy": "{:.1%}",
                # }

                # df2 = df2.format(format_dictionary)

                with c5:
                    st.pyplot(fig)
                    
                c7, c8, c9 = st.columns([1, 10, 1])
                with c8:
                    st.table(df)


#     1. Keyword heatmap \n
 #               2. SDG Classification for the paragraphs/texts in the document
 #       
    
    # with st.container():
    #     if 'docs' in st.session_state:
    #         docs = st.session_state['docs']
    #         docs_processed, df, all_text, par_list = clean.preprocessingForSDG(docs)
    #         # paraList = st.session_state['paraList']
    #         logging.info("keybert")
    #         with st.spinner("Running Key bert"):

    #             kw_model = load_keyBert()

    #             keywords = kw_model.extract_keywords(
    #             all_text,
    #             keyphrase_ngram_range=(1, 3),
    #             use_mmr=True,
    #             stop_words="english",
    #             top_n=10,
    #             diversity=0.7,
    #             )

    #             st.markdown("## 🎈 What is my document about?")
            
    #             df = (
    #                 DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"])
    #                 .sort_values(by="Relevancy", ascending=False)
    #                 .reset_index(drop=True)
    #             )
    #             df1 = (
    #                 DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"])
    #                 .sort_values(by="Relevancy", ascending=False)
    #                 .reset_index(drop=True)
    #             )
    #             df.index += 1

    #             # Add styling
    #             cmGreen = sns.light_palette("green", as_cmap=True)
    #             cmRed = sns.light_palette("red", as_cmap=True)
    #             df = df.style.background_gradient(
    #                 cmap=cmGreen,
    #                 subset=[
    #                     "Relevancy",
    #                 ],
    #             )

    #             c1, c2, c3 = st.columns([1, 3, 1])

    #             format_dictionary = {
    #                 "Relevancy": "{:.1%}",
    #             }

    #             df = df.format(format_dictionary)

    #             with c2:
    #  
    #               st.table(df)