Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM | |
import gc | |
import torch | |
def clear_memory(): | |
gc.collect() | |
torch.cuda.empty_cache() | |
model_name = "GIGAParviz/Firooze_test" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name , low_cpu_mem_usage=True , device_map="cpu") | |
model = model.to("cpu") | |
model.gradient_checkpointing_enable() | |
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=128) | |
def generate_response(prompt): | |
clear_memory() | |
instruction = f"### Instruction:\n{prompt}\n\n### Response:\n" | |
result = pipe(instruction) | |
return result[0]['generated_text'][len(instruction):] | |
with gr.Blocks() as demo: | |
gr.Markdown("<h1 style='text-align: center;'>🔮 Persian LLM made by A.M.Parviz</h1>") | |
prompt_input = gr.Textbox(label="Enter Prompt", placeholder="Type your prompt here...", lines=2) | |
generate_button = gr.Button("Generate Response") | |
response_output = gr.Textbox(label="Generated Response", lines=5) | |
generate_button.click(fn=generate_response, inputs=prompt_input, outputs=response_output) | |
clear_button = gr.ClearButton([prompt_input, response_output]) | |
demo.launch() | |