Spaces:
Runtime error
Runtime error
import json | |
import os | |
import shutil | |
from datetime import datetime | |
from pathlib import Path | |
import streamlit as st | |
from dotenv import load_dotenv | |
from huggingface_hub import HfApi, Repository | |
from utils import http_post, validate_json | |
if Path(".env").is_file(): | |
load_dotenv(".env") | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
AUTONLP_USERNAME = os.getenv("AUTONLP_USERNAME") | |
HF_AUTONLP_BACKEND_API = os.getenv("HF_AUTONLP_BACKEND_API") | |
LOCAL_REPO = "submission_repo" | |
## TODO ## | |
# 1. Add check that fields are nested under `tasks` field correctly | |
# 2. Add check that names of tasks and datasets are valid | |
########### | |
### APP ### | |
########### | |
st.title("GEM Submissions") | |
st.markdown( | |
""" | |
Welcome to the [GEM benchmark](https://gem-benchmark.com/)! GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation, both through human annotations and automated Metrics. | |
GEM aims to: | |
- measure NLG progress across many NLG tasks across languages. | |
- audit data and models and present results via data cards and model robustness reports. | |
- develop standards for evaluation of generated text using both automated and human metrics. | |
Use this page to submit your system's predictions to the benchmark. | |
""" | |
) | |
with st.form(key="form"): | |
# Flush local repo | |
shutil.rmtree(LOCAL_REPO, ignore_errors=True) | |
submission_errors = 0 | |
uploaded_file = st.file_uploader("Upload submission.json file", type=["json"]) | |
if uploaded_file: | |
if uploaded_file.name != "submission.json": | |
st.error(f"β Invalid filename. Please upload a submission.json file.") | |
submission_errors += 1 | |
else: | |
data = str(uploaded_file.read(), "utf-8") | |
json_data = json.loads(data) | |
is_valid, message = validate_json(json_data) | |
if is_valid: | |
st.success(message) | |
else: | |
st.error(message) | |
submission_errors += 1 | |
with st.expander("Submission format"): | |
st.markdown( | |
""" | |
Please follow this JSON format for your `submission.json` file: | |
```json | |
{ | |
"submission_name": "An identifying name of your system", | |
"param_count": 123, # The number of parameters your system has. | |
"description": "An optional brief description of the system that will be shown on the results page", | |
"tasks": | |
{ | |
"dataset_identifier": { | |
"values": ["output-0", "output-1", "..."], # A list of system outputs. | |
"keys": ["gem_id-0", "gem_id-1", ...] # A list of GEM IDs. | |
} | |
} | |
} | |
``` | |
In this case, `dataset_identifier` is the identifier of the dataset | |
followed by an identifier of the set the outputs were created from, for | |
example `_validation` or `_test`. For example, the `mlsum_de` test set | |
would have the identifier `mlsum_de_test`. The `keys` field is needed | |
to avoid accidental shuffling that will impact your metrics. Simply add a list | |
of the `gem_id` for each output example in the same order as your | |
values. Please see the sample submission below: | |
""" | |
) | |
with open("sample-submission.json", "r") as f: | |
example_submission = json.load(f) | |
st.json(example_submission) | |
token = st.text_input( | |
"Enter π€ Hub access token", | |
type="password", | |
help="You can generate an access token via your π€ Hub settings. See the [docs](https://huggingface.co/docs/hub/security#user-access-tokens) for more details", | |
) | |
if token: | |
try: | |
user_info = HfApi().whoami(token) | |
except Exception as e: | |
st.error("β Invalid access token") | |
submission_errors += 1 | |
submit_button = st.form_submit_button("Make Submission") | |
if submit_button and submission_errors == 0: | |
st.write("β³ Preparing submission for evaluation ...") | |
user_name = user_info["name"] | |
submission_name = json_data["submission_name"] | |
# Create submission dataset under benchmarks ORG | |
dataset_repo_url = f"https://huggingface.co/datasets/GEM-submissions/gem-{user_name}" | |
repo = Repository( | |
local_dir=LOCAL_REPO, | |
clone_from=dataset_repo_url, | |
repo_type="dataset", | |
private=True, | |
use_auth_token=HF_TOKEN, | |
) | |
submission_metadata = {"benchmark": "gem", "type": "prediction", "submission_name": submission_name} | |
repo.repocard_metadata_save(submission_metadata) | |
with open(f"{LOCAL_REPO}/submission.json", "w", encoding="utf-8") as f: | |
json.dump(json_data, f) | |
# TODO: add informative commit msg | |
commit_url = repo.push_to_hub() | |
if commit_url is not None: | |
commit_sha = commit_url.split("/")[-1] | |
else: | |
commit_sha = repo.git_head_commit_url().split("/")[-1] | |
submission_time = str(int(datetime.now().timestamp())) | |
submission_id = submission_name + "__" + commit_sha + "__" + submission_time | |
payload = { | |
"username": AUTONLP_USERNAME, | |
"dataset": "GEM/references", | |
"task": 1, | |
"model": "gem", | |
"submission_dataset": f"benchmarks/gem-{user_name}", | |
"submission_id": submission_id, | |
"col_mapping": {}, | |
"split": "test", | |
"config": None, | |
} | |
json_resp = http_post( | |
path="/evaluate/create", payload=payload, token=HF_TOKEN, domain=HF_AUTONLP_BACKEND_API | |
).json() | |
if json_resp["status"] == 1: | |
st.success(f"β Submission {submission_name} was successfully submitted for evaluation!") | |
else: | |
st.error("π Oh noes, there was an error submitting your submission! Please contact the organisers") | |
# Flush local repo | |
shutil.rmtree(LOCAL_REPO, ignore_errors=True) | |