submission-form / app.py
lewtun's picture
lewtun HF staff
Refactor to use username instead of access token
1d936f2
raw
history blame
6.62 kB
import json
import os
import shutil
from datetime import datetime
from pathlib import Path
import jsonlines
import streamlit as st
from dotenv import load_dotenv
from huggingface_hub import HfApi, Repository
from utils import http_post, validate_json
if Path(".env").is_file():
load_dotenv(".env")
HF_TOKEN = os.getenv("HF_TOKEN")
AUTONLP_USERNAME = os.getenv("AUTONLP_USERNAME")
HF_AUTONLP_BACKEND_API = os.getenv("HF_AUTONLP_BACKEND_API")
LOCAL_REPO = "submission_repo"
LOGS_REPO = "submission-logs"
## TODO ##
# 1. Add check that fields are nested under `tasks` field correctly
# 2. Add check that names of tasks and datasets are valid
# 3. Decide whether we should have 1 dataset repo per participant or 1 repo per submission
###########
### APP ###
###########
st.title("GEM Submissions")
st.markdown(
"""
Welcome to the [GEM benchmark](https://gem-benchmark.com/)! GEM is a benchmark
environment for Natural Language Generation with a focus on its Evaluation, both
through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across many NLG tasks across languages.
- audit data and models and present results via data cards and model robustness
reports.
- develop standards for evaluation of generated text using both automated and
human metrics.
Use this page to submit your system's predictions to the benchmark.
"""
)
with st.form(key="form"):
# Flush local repo
shutil.rmtree(LOCAL_REPO, ignore_errors=True)
submission_errors = 0
uploaded_file = st.file_uploader("Upload submission.json file", type=["json"])
if uploaded_file:
if uploaded_file.name != "submission.json":
st.error(f"β›” Invalid filename. Please upload a submission.json file.")
submission_errors += 1
else:
data = str(uploaded_file.read(), "utf-8")
json_data = json.loads(data)
is_valid, message = validate_json(json_data)
if is_valid:
st.success(message)
else:
st.error(message)
submission_errors += 1
with st.expander("Submission format"):
st.markdown(
"""
Please follow this JSON format for your `submission.json` file:
```json
{
"submission_name": "An identifying name of your system",
"param_count": 123, # The number of parameters your system has.
"description": "An optional brief description of the system that will be shown on the results page",
"tasks":
{
"dataset_identifier": {
"values": ["output-0", "output-1", "..."], # A list of system outputs.
"keys": ["gem_id-0", "gem_id-1", ...] # A list of GEM IDs.
}
}
}
```
Here, `dataset_identifier` is the identifier of the dataset followed by
an identifier of the set the outputs were created from, for example
`_validation` or `_test`. For example, the `mlsum_de` test set has the
identifier `mlsum_de_test`. The `keys` field is needed to avoid
accidental shuffling that will impact your metrics. Simply add a list of
IDs from the `gem_id` column of each evaluation dataset in the same
order as your values. Please see the sample submission below:
"""
)
with open("sample-submission.json", "r") as f:
example_submission = json.load(f)
st.json(example_submission)
user_name = st.text_input("Enter your πŸ€— Hub username")
submit_button = st.form_submit_button("Make Submission")
if submit_button and submission_errors == 0:
st.write("⏳ Preparing submission for evaluation ...")
# user_name = user_info["name"]
submission_name = json_data["submission_name"]
submission_name_formatted = submission_name.lower().replace(" ", "-").replace("/", "-")
print(submission_name_formatted)
submission_time = str(int(datetime.now().timestamp()))
# Create submission dataset under benchmarks ORG
submission_repo_id = f"GEM-submissions/{user_name}__{submission_name_formatted}__{submission_time}"
dataset_repo_url = f"https://huggingface.co/datasets/GEM-submissions/{submission_repo_id}"
repo = Repository(
local_dir=LOCAL_REPO,
clone_from=dataset_repo_url,
repo_type="dataset",
private=False,
use_auth_token=HF_TOKEN,
)
submission_metadata = {"benchmark": "gem", "type": "prediction", "submission_name": submission_name}
repo.repocard_metadata_save(submission_metadata)
with open(f"{LOCAL_REPO}/submission.json", "w", encoding="utf-8") as f:
json.dump(json_data, f)
# TODO: add informative commit msg
commit_url = repo.push_to_hub()
if commit_url is not None:
commit_sha = commit_url.split("/")[-1]
else:
commit_sha = repo.git_head_commit_url().split("/")[-1]
submission_id = submission_name + "__" + commit_sha + "__" + submission_time
payload = {
"username": AUTONLP_USERNAME,
"dataset": "GEM/references",
"task": 1,
"model": "gem",
"submission_dataset": submission_repo_id,
"submission_id": submission_id,
"col_mapping": {},
"split": "test",
"config": None,
}
json_resp = http_post(
path="/evaluate/create", payload=payload, token=HF_TOKEN, domain=HF_AUTONLP_BACKEND_API
).json()
logs_repo_url = f"https://huggingface.co/datasets/GEM-submissions/{LOGS_REPO}"
logs_repo = Repository(
local_dir=LOGS_REPO,
clone_from=logs_repo_url,
repo_type="dataset",
private=True,
use_auth_token=HF_TOKEN,
)
json_resp["submission_name"] = submission_name
with jsonlines.open(f"{LOGS_REPO}/logs.jsonl") as r:
lines = []
for obj in r:
lines.append(obj)
lines.append(json_resp)
with jsonlines.open(f"{LOGS_REPO}/logs.jsonl", mode="w") as writer:
for job in lines:
writer.write(job)
logs_repo.push_to_hub(commit_message=f"Submission with job ID {json_resp['id']}")
if json_resp["status"] == 1:
st.success(
f"βœ… Submission {submission_name} was successfully submitted for evaluation with job ID {json_resp['id']}"
)
else:
st.error("πŸ™ˆ Oh noes, there was an error submitting your submission! Please contact the organisers")
# Flush local repos
shutil.rmtree(LOCAL_REPO, ignore_errors=True)
shutil.rmtree(LOGS_REPO, ignore_errors=True)