Spaces:
Runtime error
Runtime error
import streamlit as st | |
from .streamlit_utils import ( | |
make_text_input | |
) | |
from .streamlit_utils import ( | |
make_multiselect, | |
make_selectbox, | |
make_text_area, | |
make_text_input, | |
make_radio, | |
) | |
N_FIELDS_ORIGINAL = 4 | |
N_FIELDS_LANGUAGE = 12 | |
N_FIELDS_ANNOTATIONS = 0 | |
N_FIELDS_CONSENT = 0 | |
N_FIELDS_PII = 0 | |
N_FIELDS_MAINTENANCE = 0 | |
N_FIELDS_GEM = 0 | |
N_FIELDS = N_FIELDS_ORIGINAL + \ | |
N_FIELDS_LANGUAGE + \ | |
N_FIELDS_ANNOTATIONS + \ | |
N_FIELDS_CONSENT + \ | |
N_FIELDS_PII + \ | |
N_FIELDS_MAINTENANCE + \ | |
N_FIELDS_GEM | |
""" | |
What was the selection criteria? [Describe the process for selecting instances to include in the dataset, including any tools used.] | |
""" | |
def curation_page(): | |
st.session_state.card_dict["curation"] = st.session_state.card_dict.get("curation", {}) | |
with st.expander("Original Curation", expanded=False): | |
key_pref = ["curation", "original"] | |
st.session_state.card_dict["curation"]["original"] = st.session_state.card_dict["curation"].get("original", {}) | |
make_text_area( | |
label="Original curation rationale", | |
key_list=key_pref + ["rationale"], | |
help="Describe the curation rationale behind the original dataset(s)." | |
) | |
make_text_area( | |
label="What was the communicative goal?", | |
key_list=key_pref + ["communicative"], | |
help="Describe the communicative goal that the original dataset(s) was trying to represent." | |
) | |
make_radio( | |
label="Is the dataset aggregated from different data sources?", | |
options=["no", "yes"], | |
key_list=key_pref + ["is-aggregated"], | |
help="e.g. Wikipedia, movi dialogues, etc.", | |
) | |
make_text_area( | |
label="If yes, list the sources", | |
key_list=key_pref + ["aggregated-sources"], | |
help="Otherwise, type N/A" | |
) | |
with st.expander("Language Data", expanded=False): | |
key_pref = ["curation", "language"] | |
st.session_state.card_dict["curation"]["language"] = st.session_state.card_dict["curation"].get("language", {}) | |
make_multiselect( | |
label="How was the language data obtained?", | |
options=["found", "created for the dataset", "crowdsourced", "machine-generated", "other"], | |
key_list=key_pref+["obtained"], | |
) | |
make_multiselect( | |
label="If found, where from?", | |
options=["website", "offline media collection", "other", "N/A"], | |
key_list=key_pref+["found"], | |
help="select N/A if none of the language data was found" | |
) | |
make_multiselect( | |
label="If crowdsourced, where from?", | |
options=["Amazon Mechanical Turk", "other crowdworker platform", "participatory experiment", "other", "N/A"], | |
key_list=key_pref+["crowdsourced"], | |
help="select N/A if none of the language data was crowdsourced" | |
) | |
make_text_area( | |
label="If created for the dataset, describe the creation process.", | |
key_list=key_pref+["created"], | |
) | |
make_text_area( | |
label="What further information do we have on the language producers?", | |
key_list=key_pref+["producers-description"], | |
help="Provide a description of the context in which the language was produced and who produced it.", | |
) | |
make_text_input( | |
label="If text was machine-generated for the dataset, provide a link to the generation method if available (N/A otherwise).", | |
key_list=key_pref+["machine-generated"], | |
help="if the generation code is unavailable, enter N/A", | |
) | |
make_selectbox( | |
label="Was the text validated by a different worker or a data curator?", | |
options=["not validated", "validated by crowdworker", "validated by data curator", "other"], | |
key_list=key_pref+["validated"], | |
help="this question is about human or human-in-the-loop validation only" | |
) | |
make_multiselect( | |
label="In what kind of organization did the curation happen?", | |
options= ["industry", "academic", "independent", "other"], | |
key_list=key_pref+["organization-type"], | |
) | |
make_text_input( | |
label="Name the organization(s).", | |
key_list=key_pref+["organization-names"], | |
help="comma-separated", | |
) | |
make_text_area( | |
label="How was the text data pre-processed? (Enter N/A if the text was not pre-processed)", | |
key_list=key_pref+["pre-processed"], | |
help="List the steps in preprocessing the data for the dataset. Enter N/A if no steps were taken." | |
) | |
make_selectbox( | |
label="Were text instances selected or filtered?", | |
options=["not filtered", "manually", "algorithmically", "hybrid"], | |
key_list=key_pref+["is-filtered"], | |
) | |
make_text_area( | |
label="What were the selection criteria?", | |
key_list=key_pref+["filtered-criteria"], | |
help="Describe the process for selecting instances to include in the dataset, including any tools used. If no selection was done, enter N/A." | |
) | |
with st.expander("Structured Annotations", expanded=False): | |
key_pref = ["curation", "annotations"] | |
st.session_state.card_dict["curation"]["annotations"] = st.session_state.card_dict["curation"].get("annotations", {}) | |
with st.expander("Consent", expanded=False): | |
key_pref = ["curation", "consent"] | |
st.session_state.card_dict["curation"]["consent"] = st.session_state.card_dict["curation"].get("consent", {}) | |
with st.expander("Private Identifying Information (PII)", expanded=False): | |
key_pref = ["curation", "pii"] | |
st.session_state.card_dict["curation"]["pii"] = st.session_state.card_dict["curation"].get("pii", {}) | |
with st.expander("Maintenance", expanded=False): | |
key_pref = ["curation", "maintenance"] | |
st.session_state.card_dict["curation"]["maintenance"] = st.session_state.card_dict["curation"].get("maintenance", {}) | |
with st.expander("GEM Additional Curation", expanded=False): | |
key_pref = ["curation", "gem"] | |
st.session_state.card_dict["curation"]["gem"] = st.session_state.card_dict["curation"].get("gem", {}) | |
def curation_summary(): | |
total_filled = sum([len(dct) for dct in st.session_state.card_dict.get('curation', {}).values()]) | |
with st.expander(f"Dataset Curation Completion - {total_filled} of {N_FIELDS}", expanded=False): | |
completion_markdown = "" | |
completion_markdown += f"- **Overall competion:**\n - {total_filled} of {N_FIELDS} fields\n" | |
completion_markdown += f"- **Sub-section - Original Curation:**\n - {len(st.session_state.card_dict.get('curation', {}).get('original', {}))} of {N_FIELDS_ORIGINAL} fields\n" | |
completion_markdown += f"- **Sub-section - Language Data:**\n - {len(st.session_state.card_dict.get('curation', {}).get('language', {}))} of {N_FIELDS_LANGUAGE} fields\n" | |
completion_markdown += f"- **Sub-section - Structured Annotations:**\n - {len(st.session_state.card_dict.get('curation', {}).get('annotations', {}))} of {N_FIELDS_ANNOTATIONS} fields\n" | |
completion_markdown += f"- **Sub-section - Consent:**\n - {len(st.session_state.card_dict.get('curation', {}).get('consent', {}))} of {N_FIELDS_CONSENT} fields\n" | |
completion_markdown += f"- **Sub-section - PII:**\n - {len(st.session_state.card_dict.get('curation', {}).get('pii', {}))} of {N_FIELDS_PII} fields\n" | |
completion_markdown += f"- **Sub-section - Maintenance:**\n - {len(st.session_state.card_dict.get('curation', {}).get('maintenance', {}))} of {N_FIELDS_MAINTENANCE} fields\n" | |
completion_markdown += f"- **Sub-section - GEM Curation:**\n - {len(st.session_state.card_dict.get('curation', {}).get('gem', {}))} of {N_FIELDS_GEM} fields\n" | |
st.markdown(completion_markdown) | |