File size: 8,044 Bytes
ac6c40f
 
 
 
 
 
d1a58c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac6c40f
 
d1a58c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac6c40f
 
d1a58c9
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import streamlit as st

from .streamlit_utils import (
    make_text_input
)

from .streamlit_utils import (
    make_multiselect,
    make_selectbox,
    make_text_area,
    make_text_input,
    make_radio,
)

N_FIELDS_ORIGINAL = 4
N_FIELDS_LANGUAGE = 12
N_FIELDS_ANNOTATIONS = 0
N_FIELDS_CONSENT = 0
N_FIELDS_PII = 0
N_FIELDS_MAINTENANCE = 0
N_FIELDS_GEM = 0

N_FIELDS = N_FIELDS_ORIGINAL + \
    N_FIELDS_LANGUAGE + \
    N_FIELDS_ANNOTATIONS + \
    N_FIELDS_CONSENT + \
    N_FIELDS_PII + \
    N_FIELDS_MAINTENANCE + \
    N_FIELDS_GEM


"""
What was the selection criteria? [Describe the process for selecting instances to include in the dataset, including any tools used.]
"""

def curation_page():
    st.session_state.card_dict["curation"] = st.session_state.card_dict.get("curation", {})
    with st.expander("Original Curation", expanded=False):
        key_pref = ["curation", "original"]
        st.session_state.card_dict["curation"]["original"] = st.session_state.card_dict["curation"].get("original", {})
        make_text_area(
            label="Original curation rationale",
            key_list=key_pref + ["rationale"],
            help="Describe the curation rationale behind the original dataset(s)."
        )
        make_text_area(
            label="What was the communicative goal?",
            key_list=key_pref + ["communicative"],
            help="Describe the communicative goal that the original dataset(s) was trying to represent."
        )
        make_radio(
            label="Is the dataset aggregated from different data sources?",
            options=["no", "yes"],
            key_list=key_pref + ["is-aggregated"],
            help="e.g. Wikipedia, movi dialogues, etc.",
        )
        make_text_area(
            label="If yes, list the sources",
            key_list=key_pref + ["aggregated-sources"],
            help="Otherwise, type N/A"
        )
    with st.expander("Language Data", expanded=False):
        key_pref = ["curation", "language"]
        st.session_state.card_dict["curation"]["language"] = st.session_state.card_dict["curation"].get("language", {})
        make_multiselect(
            label="How was the language data obtained?",
            options=["found", "created for the dataset", "crowdsourced", "machine-generated", "other"],
            key_list=key_pref+["obtained"],
        )
        make_multiselect(
            label="If found, where from?",
            options=["website", "offline media collection", "other", "N/A"],
            key_list=key_pref+["found"],
            help="select N/A if none of the language data was found"
        )
        make_multiselect(
            label="If crowdsourced, where from?",
            options=["Amazon Mechanical Turk", "other crowdworker platform", "participatory experiment", "other", "N/A"],
            key_list=key_pref+["crowdsourced"],
            help="select N/A if none of the language data was crowdsourced"
        )
        make_text_area(
            label="If created for the dataset, describe the creation process.",
            key_list=key_pref+["created"],
        )
        make_text_area(
            label="What further information do we have on the language producers?",
            key_list=key_pref+["producers-description"],
            help="Provide a description of the context in which the language was produced and who produced it.",
        )
        make_text_input(
            label="If text was machine-generated for the dataset, provide a link to the generation method if available (N/A otherwise).",
            key_list=key_pref+["machine-generated"],
            help="if the generation code is unavailable, enter N/A",
        )
        make_selectbox(
            label="Was the text validated by a different worker or a data curator?",
            options=["not validated", "validated by crowdworker", "validated by data curator", "other"],
            key_list=key_pref+["validated"],
            help="this question is about human or human-in-the-loop validation only"
        )
        make_multiselect(
            label="In what kind of organization did the curation happen?",
            options= ["industry",  "academic", "independent", "other"],
            key_list=key_pref+["organization-type"],
        )
        make_text_input(
            label="Name the organization(s).",
            key_list=key_pref+["organization-names"],
            help="comma-separated",
        )
        make_text_area(
            label="How was the text data pre-processed? (Enter N/A if the text was not pre-processed)",
            key_list=key_pref+["pre-processed"],
            help="List the steps in preprocessing the data for the dataset. Enter N/A if no steps were taken."
        )
        make_selectbox(
            label="Were text instances selected or filtered?",
            options=["not filtered", "manually", "algorithmically", "hybrid"],
            key_list=key_pref+["is-filtered"],
        )
        make_text_area(
            label="What were the selection criteria?",
            key_list=key_pref+["filtered-criteria"],
            help="Describe the process for selecting instances to include in the dataset, including any tools used. If no selection was done, enter N/A."
        )
    with st.expander("Structured Annotations", expanded=False):
        key_pref = ["curation", "annotations"]
        st.session_state.card_dict["curation"]["annotations"] = st.session_state.card_dict["curation"].get("annotations", {})
    with st.expander("Consent", expanded=False):
        key_pref = ["curation", "consent"]
        st.session_state.card_dict["curation"]["consent"] = st.session_state.card_dict["curation"].get("consent", {})
    with st.expander("Private Identifying Information (PII)", expanded=False):
        key_pref = ["curation", "pii"]
        st.session_state.card_dict["curation"]["pii"] = st.session_state.card_dict["curation"].get("pii", {})
    with st.expander("Maintenance", expanded=False):
        key_pref = ["curation", "maintenance"]
        st.session_state.card_dict["curation"]["maintenance"] = st.session_state.card_dict["curation"].get("maintenance", {})
    with st.expander("GEM Additional Curation", expanded=False):
        key_pref = ["curation", "gem"]
        st.session_state.card_dict["curation"]["gem"] = st.session_state.card_dict["curation"].get("gem", {})


def curation_summary():
    total_filled = sum([len(dct) for dct in st.session_state.card_dict.get('curation', {}).values()])
    with st.expander(f"Dataset Curation Completion - {total_filled} of {N_FIELDS}", expanded=False):
        completion_markdown = ""
        completion_markdown += f"- **Overall competion:**\n  - {total_filled} of {N_FIELDS} fields\n"
        completion_markdown += f"- **Sub-section - Original Curation:**\n  - {len(st.session_state.card_dict.get('curation', {}).get('original', {}))} of {N_FIELDS_ORIGINAL} fields\n"
        completion_markdown += f"- **Sub-section - Language Data:**\n  - {len(st.session_state.card_dict.get('curation', {}).get('language', {}))} of {N_FIELDS_LANGUAGE} fields\n"
        completion_markdown += f"- **Sub-section - Structured Annotations:**\n  - {len(st.session_state.card_dict.get('curation', {}).get('annotations', {}))} of {N_FIELDS_ANNOTATIONS} fields\n"
        completion_markdown += f"- **Sub-section - Consent:**\n  - {len(st.session_state.card_dict.get('curation', {}).get('consent', {}))} of {N_FIELDS_CONSENT} fields\n"
        completion_markdown += f"- **Sub-section - PII:**\n  - {len(st.session_state.card_dict.get('curation', {}).get('pii', {}))} of {N_FIELDS_PII} fields\n"
        completion_markdown += f"- **Sub-section - Maintenance:**\n  - {len(st.session_state.card_dict.get('curation', {}).get('maintenance', {}))} of {N_FIELDS_MAINTENANCE} fields\n"
        completion_markdown += f"- **Sub-section - GEM Curation:**\n  - {len(st.session_state.card_dict.get('curation', {}).get('gem', {}))} of {N_FIELDS_GEM} fields\n"
        st.markdown(completion_markdown)