FuturesonyAi / app.py
Futuresony's picture
Update app.py
d6d11a8 verified
import gradio as gr
from huggingface_hub import InferenceClient
import os
# πŸ”Ή Hugging Face Credentials
HF_REPO = "Futuresony/future_ai_12_10_2024.gguf"
HF_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
client = InferenceClient(HF_REPO, token=HF_TOKEN)
def format_alpaca_prompt(user_input, system_prompt, history):
"""Formats input in Alpaca/LLaMA style"""
history_str = "\n".join([f"### Instruction:\n{h[0]}\n### Response:\n{h[1]}" for h in history])
prompt = f"""{system_prompt}
{history_str}
### Instruction:
{user_input}
### Response:
"""
return prompt
def respond(message, history, system_message, max_tokens, temperature, top_p):
formatted_prompt = format_alpaca_prompt(message, system_message, history)
response = client.text_generation(
formatted_prompt,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
# βœ… Extract only the response
cleaned_response = response.split("### Response:")[-1].strip()
history.append((message, cleaned_response)) # βœ… Update history with the new message and response
yield cleaned_response # βœ… Output only the answer
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=250, value=128, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.9, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.99, step=0.01, label="Top-p (nucleus sampling)"),
],
)
if __name__ == "__main__":
demo.launch()