Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import os | |
# πΉ Hugging Face Credentials | |
HF_REPO = "Futuresony/future_ai_12_10_2024.gguf" | |
HF_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN') | |
client = InferenceClient(HF_REPO, token=HF_TOKEN) | |
def format_alpaca_prompt(user_input, system_prompt, history): | |
"""Formats input in Alpaca/LLaMA style""" | |
history_str = "\n".join([f"### Instruction:\n{h[0]}\n### Response:\n{h[1]}" for h in history]) | |
prompt = f"""{system_prompt} | |
{history_str} | |
### Instruction: | |
{user_input} | |
### Response: | |
""" | |
return prompt | |
def respond(message, history, system_message, max_tokens, temperature, top_p): | |
formatted_prompt = format_alpaca_prompt(message, system_message, history) | |
response = client.text_generation( | |
formatted_prompt, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
) | |
# β Extract only the response | |
cleaned_response = response.split("### Response:")[-1].strip() | |
history.append((message, cleaned_response)) # β Update history with the new message and response | |
yield cleaned_response # β Output only the answer | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=250, value=128, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.9, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.99, step=0.01, label="Top-p (nucleus sampling)"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |