import gradio as gr from huggingface_hub import InferenceClient import os # 🔹 Hugging Face Credentials HF_REPO = "Futuresony/future_ai_12_10_2024.gguf" HF_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN') client = InferenceClient(HF_REPO, token=HF_TOKEN) def format_alpaca_prompt(user_input, system_prompt, history): """Formats input in Alpaca/LLaMA style""" history_str = "\n".join([f"### Instruction:\n{h[0]}\n### Response:\n{h[1]}" for h in history]) prompt = f"""{system_prompt} {history_str} ### Instruction: {user_input} ### Response: """ return prompt def respond(message, history, system_message, max_tokens, temperature, top_p): formatted_prompt = format_alpaca_prompt(message, system_message, history) response = client.text_generation( formatted_prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, ) # ✅ Extract only the response cleaned_response = response.split("### Response:")[-1].strip() history.append((message, cleaned_response)) # ✅ Update history with the new message and response yield cleaned_response # ✅ Output only the answer demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=250, value=128, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.9, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.99, step=0.01, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()