Spaces:
Running
on
L4
Running
on
L4
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang) | |
# 2023 Horizon Inc. (authors: Xingchen Song) | |
# 2024 Alibaba Inc (authors: Xiang Lyu) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import logging | |
import os | |
import torch | |
import json | |
import re | |
import datetime | |
import yaml | |
import deepspeed | |
import torch.optim as optim | |
import torch.distributed as dist | |
from torch.utils.tensorboard import SummaryWriter | |
from torch.utils.data import DataLoader | |
from torch.nn.utils import clip_grad_norm_ | |
from deepspeed.runtime.zero.stage_1_and_2 import estimate_zero2_model_states_mem_needs_all_live | |
from cosyvoice.dataset.dataset import Dataset | |
from cosyvoice.utils.scheduler import WarmupLR, NoamHoldAnnealing, ConstantLR | |
def init_distributed(args): | |
world_size = int(os.environ.get('WORLD_SIZE', 1)) | |
local_rank = int(os.environ.get('LOCAL_RANK', 0)) | |
rank = int(os.environ.get('RANK', 0)) | |
logging.info('training on multiple gpus, this gpu {}'.format(local_rank) + | |
', rank {}, world_size {}'.format(rank, world_size)) | |
if args.train_engine == 'torch_ddp': | |
torch.cuda.set_device(local_rank) | |
dist.init_process_group(args.dist_backend) | |
else: | |
deepspeed.init_distributed(dist_backend=args.dist_backend) | |
return world_size, local_rank, rank | |
def init_dataset_and_dataloader(args, configs, gan): | |
data_pipeline = configs['data_pipeline_gan'] if gan is True else configs['data_pipeline'] | |
train_dataset = Dataset(args.train_data, data_pipeline=data_pipeline, mode='train', gan=gan, shuffle=True, partition=True) | |
cv_dataset = Dataset(args.cv_data, data_pipeline=data_pipeline, mode='train', gan=gan, shuffle=False, partition=False) | |
# do not use persistent_workers=True, as whisper tokenizer opens tiktoken file each time when the for loop starts | |
train_data_loader = DataLoader(train_dataset, | |
batch_size=None, | |
pin_memory=args.pin_memory, | |
num_workers=args.num_workers, | |
prefetch_factor=args.prefetch) | |
cv_data_loader = DataLoader(cv_dataset, | |
batch_size=None, | |
pin_memory=args.pin_memory, | |
num_workers=args.num_workers, | |
prefetch_factor=args.prefetch) | |
return train_dataset, cv_dataset, train_data_loader, cv_data_loader | |
def check_modify_and_save_config(args, configs): | |
if args.train_engine == "torch_ddp": | |
configs['train_conf']["dtype"] = 'fp32' | |
else: | |
with open(args.deepspeed_config, 'r') as fin: | |
ds_configs = json.load(fin) | |
if "fp16" in ds_configs and ds_configs["fp16"]["enabled"]: | |
configs['train_conf']["dtype"] = "fp16" | |
elif "bf16" in ds_configs and ds_configs["bf16"]["enabled"]: | |
configs['train_conf']["dtype"] = "bf16" | |
else: | |
configs['train_conf']["dtype"] = "fp32" | |
assert ds_configs["train_micro_batch_size_per_gpu"] == 1 | |
# if use deepspeed, override ddp config | |
configs['train_conf']['save_per_step'] = int(configs['train_conf']['save_per_step'] * | |
configs['train_conf']['accum_grad'] / ds_configs["gradient_accumulation_steps"]) | |
configs['train_conf']['accum_grad'] = ds_configs["gradient_accumulation_steps"] | |
configs['train_conf']['grad_clip'] = ds_configs["gradient_clipping"] | |
configs['train_conf']['log_interval'] = ds_configs["steps_per_print"] | |
return configs | |
def wrap_cuda_model(args, model): | |
local_world_size = int(os.environ.get('LOCAL_WORLD_SIZE', 1)) | |
world_size = int(os.environ.get('WORLD_SIZE', 1)) | |
if args.train_engine == "torch_ddp": # native pytorch ddp | |
assert (torch.cuda.is_available()) | |
model.cuda() | |
model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True) | |
else: | |
if int(os.environ.get('RANK', 0)) == 0: | |
logging.info("Estimating model states memory needs (zero2)...") | |
estimate_zero2_model_states_mem_needs_all_live( | |
model, | |
num_gpus_per_node=local_world_size, | |
num_nodes=world_size // local_world_size) | |
return model | |
def init_optimizer_and_scheduler(args, configs, model, gan): | |
if gan is False: | |
if configs['train_conf']['optim'] == 'adam': | |
optimizer = optim.Adam(model.parameters(), **configs['train_conf']['optim_conf']) | |
elif configs['train_conf']['optim'] == 'adamw': | |
optimizer = optim.AdamW(model.parameters(), **configs['train_conf']['optim_conf']) | |
else: | |
raise ValueError("unknown optimizer: " + configs['train_conf']) | |
if configs['train_conf']['scheduler'] == 'warmuplr': | |
scheduler_type = WarmupLR | |
scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf']) | |
elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing': | |
scheduler_type = NoamHoldAnnealing | |
scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf']) | |
elif configs['train_conf']['scheduler'] == 'constantlr': | |
scheduler_type = ConstantLR | |
scheduler = ConstantLR(optimizer) | |
else: | |
raise ValueError("unknown scheduler: " + configs['train_conf']) | |
# use deepspeed optimizer for speedup | |
if args.train_engine == "deepspeed": | |
def scheduler(opt): | |
return scheduler_type(opt, **configs['train_conf']['scheduler_conf']) | |
model, optimizer, _, scheduler = deepspeed.initialize( | |
args=args, | |
model=model, | |
optimizer=None, | |
lr_scheduler=scheduler, | |
model_parameters=model.parameters()) | |
optimizer_d, scheduler_d = None, None | |
else: | |
# currently we wrap generator and discriminator in one model, so we cannot use deepspeed | |
if configs['train_conf']['optim'] == 'adam': | |
optimizer = optim.Adam(model.module.generator.parameters(), **configs['train_conf']['optim_conf']) | |
elif configs['train_conf']['optim'] == 'adamw': | |
optimizer = optim.AdamW(model.module.generator.parameters(), **configs['train_conf']['optim_conf']) | |
else: | |
raise ValueError("unknown optimizer: " + configs['train_conf']) | |
if configs['train_conf']['scheduler'] == 'warmuplr': | |
scheduler_type = WarmupLR | |
scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf']) | |
elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing': | |
scheduler_type = NoamHoldAnnealing | |
scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf']) | |
elif configs['train_conf']['scheduler'] == 'constantlr': | |
scheduler_type = ConstantLR | |
scheduler = ConstantLR(optimizer) | |
else: | |
raise ValueError("unknown scheduler: " + configs['train_conf']) | |
if configs['train_conf']['optim_d'] == 'adam': | |
optimizer_d = optim.Adam(model.module.discriminator.parameters(), **configs['train_conf']['optim_conf']) | |
elif configs['train_conf']['optim_d'] == 'adamw': | |
optimizer_d = optim.AdamW(model.module.discriminator.parameters(), **configs['train_conf']['optim_conf']) | |
else: | |
raise ValueError("unknown optimizer: " + configs['train_conf']) | |
if configs['train_conf']['scheduler_d'] == 'warmuplr': | |
scheduler_type = WarmupLR | |
scheduler_d = WarmupLR(optimizer_d, **configs['train_conf']['scheduler_conf']) | |
elif configs['train_conf']['scheduler_d'] == 'NoamHoldAnnealing': | |
scheduler_type = NoamHoldAnnealing | |
scheduler_d = NoamHoldAnnealing(optimizer_d, **configs['train_conf']['scheduler_conf']) | |
elif configs['train_conf']['scheduler'] == 'constantlr': | |
scheduler_type = ConstantLR | |
scheduler_d = ConstantLR(optimizer_d) | |
else: | |
raise ValueError("unknown scheduler: " + configs['train_conf']) | |
return model, optimizer, scheduler, optimizer_d, scheduler_d | |
def init_summarywriter(args): | |
writer = None | |
if int(os.environ.get('RANK', 0)) == 0: | |
os.makedirs(args.model_dir, exist_ok=True) | |
writer = SummaryWriter(args.tensorboard_dir) | |
return writer | |
def save_model(model, model_name, info_dict): | |
rank = int(os.environ.get('RANK', 0)) | |
model_dir = info_dict["model_dir"] | |
save_model_path = os.path.join(model_dir, '{}.pt'.format(model_name)) | |
if info_dict["train_engine"] == "torch_ddp": | |
if rank == 0: | |
torch.save({**model.module.state_dict(), 'epoch': info_dict['epoch'], 'step': info_dict['step']}, save_model_path) | |
else: | |
with torch.no_grad(): | |
model.save_checkpoint(save_dir=model_dir, | |
tag=model_name, | |
client_state=info_dict) | |
if rank == 0: | |
info_path = re.sub('.pt$', '.yaml', save_model_path) | |
info_dict['save_time'] = datetime.datetime.now().strftime('%d/%m/%Y %H:%M:%S') | |
with open(info_path, 'w') as fout: | |
data = yaml.dump(info_dict) | |
fout.write(data) | |
logging.info('[Rank {}] Checkpoint: save to checkpoint {}'.format(rank, save_model_path)) | |
def cosyvoice_join(group_join, info_dict): | |
world_size = int(os.environ.get('WORLD_SIZE', 1)) | |
local_rank = int(os.environ.get('LOCAL_RANK', 0)) | |
rank = int(os.environ.get('RANK', 0)) | |
if info_dict["batch_idx"] != 0: | |
# we try to join all rank in both ddp and deepspeed mode, in case different rank has different lr | |
try: | |
dist.monitored_barrier(group=group_join, | |
timeout=group_join.options._timeout) | |
return False | |
except RuntimeError as e: | |
logging.info("Detected uneven workload distribution: {}\n".format(e) + | |
"Break current worker to manually join all workers, " + | |
"world_size {}, current rank {}, current local_rank {}\n". | |
format(world_size, rank, local_rank)) | |
return True | |
else: | |
return False | |
def batch_forward(model, batch, scaler, info_dict): | |
device = int(os.environ.get('LOCAL_RANK', 0)) | |
dtype = info_dict["dtype"] | |
if dtype == "fp16": | |
dtype = torch.float16 | |
elif dtype == "bf16": | |
dtype = torch.bfloat16 | |
else: # fp32 | |
dtype = torch.float32 | |
if info_dict['train_engine'] == 'torch_ddp': | |
autocast = torch.cuda.amp.autocast(enabled=scaler is not None) | |
else: | |
autocast = torch.cuda.amp.autocast(enabled=True, dtype=dtype, cache_enabled=False) | |
with autocast: | |
info_dict['loss_dict'] = model(batch, device) | |
return info_dict | |
def batch_backward(model, scaler, info_dict): | |
if info_dict["train_engine"] == "deepspeed": | |
scaled_loss = model.backward(info_dict['loss_dict']['loss']) | |
else: | |
scaled_loss = info_dict['loss_dict']['loss'] / info_dict['accum_grad'] | |
if scaler is not None: | |
scaler.scale(scaled_loss).backward() | |
else: | |
scaled_loss.backward() | |
info_dict['loss_dict']['loss'] = scaled_loss | |
return info_dict | |
def update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict): | |
grad_norm = 0.0 | |
if info_dict['train_engine'] == "deepspeed": | |
info_dict["is_gradient_accumulation_boundary"] = model.is_gradient_accumulation_boundary() | |
model.step() | |
grad_norm = model.get_global_grad_norm() | |
elif (info_dict['batch_idx'] + 1) % info_dict["accum_grad"] == 0: | |
# Use mixed precision training | |
if scaler is not None: | |
scaler.unscale_(optimizer) | |
grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip']) | |
# We don't check grad here since that if the gradient | |
# has inf/nan values, scaler.step will skip | |
# optimizer.step(). | |
if torch.isfinite(grad_norm): | |
scaler.step(optimizer) | |
scaler.update() | |
else: | |
grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip']) | |
if torch.isfinite(grad_norm): | |
optimizer.step() | |
optimizer.zero_grad() | |
scheduler.step() | |
info_dict["lr"] = optimizer.param_groups[0]['lr'] | |
info_dict["grad_norm"] = grad_norm | |
return info_dict | |
def log_per_step(writer, info_dict): | |
tag = info_dict["tag"] | |
epoch = info_dict.get('epoch', 0) | |
step = info_dict["step"] | |
batch_idx = info_dict["batch_idx"] | |
loss_dict = info_dict['loss_dict'] | |
rank = int(os.environ.get('RANK', 0)) | |
# only rank 0 write to tensorboard to avoid multi-process write | |
if writer is not None: | |
if (info_dict['train_engine'] == 'deepspeed' and info_dict['is_gradient_accumulation_boundary'] is True) or \ | |
(info_dict['train_engine'] == 'torch_ddp' and (info_dict['batch_idx'] + 1) % info_dict['accum_grad'] == 0): | |
for k in ['epoch', 'lr', 'grad_norm']: | |
writer.add_scalar('{}/{}'.format(tag, k), info_dict[k], step + 1) | |
for k, v in loss_dict.items(): | |
writer.add_scalar('{}/{}'.format(tag, k), v, step + 1) | |
# TRAIN & CV, Shell log (stdout) | |
if (info_dict['batch_idx'] + 1) % info_dict['log_interval'] == 0: | |
log_str = '{} Batch {}/{} '.format(tag, epoch, batch_idx + 1) | |
for name, value in loss_dict.items(): | |
log_str += '{} {:.6f} '.format(name, value) | |
if tag == "TRAIN": | |
log_str += 'lr {:.8f} grad_norm {:.6f}'.format( | |
info_dict["lr"], info_dict['grad_norm']) | |
log_str += ' rank {}'.format(rank) | |
logging.debug(log_str) | |
def log_per_save(writer, info_dict): | |
tag = info_dict["tag"] | |
epoch = info_dict["epoch"] | |
step = info_dict["step"] | |
loss_dict = info_dict["loss_dict"] | |
lr = info_dict['lr'] | |
rank = int(os.environ.get('RANK', 0)) | |
logging.info( | |
'Epoch {} Step {} CV info lr {} {} rank {}'.format( | |
epoch, step + 1, lr, rank, ' '.join(['{}_{}'.format(k, v) for k, v in loss_dict.items()]))) | |
if writer is not None: | |
for k in ['epoch', 'lr']: | |
writer.add_scalar('{}/{}'.format(tag, k), info_dict[k], step + 1) | |
for k, v in loss_dict.items(): | |
writer.add_scalar('{}/{}'.format(tag, k), v, step + 1) | |