Spaces:
Running
on
L4
Running
on
L4
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang) | |
# 2024 Alibaba Inc (authors: Xiang Lyu) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Modified from ESPnet(https://github.com/espnet/espnet) | |
"""Unility functions for Transformer.""" | |
import random | |
from typing import List | |
import numpy as np | |
import torch | |
IGNORE_ID = -1 | |
def pad_list(xs: List[torch.Tensor], pad_value: int): | |
"""Perform padding for the list of tensors. | |
Args: | |
xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)]. | |
pad_value (float): Value for padding. | |
Returns: | |
Tensor: Padded tensor (B, Tmax, `*`). | |
Examples: | |
>>> x = [torch.ones(4), torch.ones(2), torch.ones(1)] | |
>>> x | |
[tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])] | |
>>> pad_list(x, 0) | |
tensor([[1., 1., 1., 1.], | |
[1., 1., 0., 0.], | |
[1., 0., 0., 0.]]) | |
""" | |
max_len = max([len(item) for item in xs]) | |
batchs = len(xs) | |
ndim = xs[0].ndim | |
if ndim == 1: | |
pad_res = torch.zeros(batchs, | |
max_len, | |
dtype=xs[0].dtype, | |
device=xs[0].device) | |
elif ndim == 2: | |
pad_res = torch.zeros(batchs, | |
max_len, | |
xs[0].shape[1], | |
dtype=xs[0].dtype, | |
device=xs[0].device) | |
elif ndim == 3: | |
pad_res = torch.zeros(batchs, | |
max_len, | |
xs[0].shape[1], | |
xs[0].shape[2], | |
dtype=xs[0].dtype, | |
device=xs[0].device) | |
else: | |
raise ValueError(f"Unsupported ndim: {ndim}") | |
pad_res.fill_(pad_value) | |
for i in range(batchs): | |
pad_res[i, :len(xs[i])] = xs[i] | |
return pad_res | |
def th_accuracy(pad_outputs: torch.Tensor, pad_targets: torch.Tensor, | |
ignore_label: int) -> torch.Tensor: | |
"""Calculate accuracy. | |
Args: | |
pad_outputs (Tensor): Prediction tensors (B * Lmax, D). | |
pad_targets (LongTensor): Target label tensors (B, Lmax). | |
ignore_label (int): Ignore label id. | |
Returns: | |
torch.Tensor: Accuracy value (0.0 - 1.0). | |
""" | |
pad_pred = pad_outputs.view(pad_targets.size(0), pad_targets.size(1), | |
pad_outputs.size(1)).argmax(2) | |
mask = pad_targets != ignore_label | |
numerator = torch.sum( | |
pad_pred.masked_select(mask) == pad_targets.masked_select(mask)) | |
denominator = torch.sum(mask) | |
return (numerator / denominator).detach() | |
def get_padding(kernel_size, dilation=1): | |
return int((kernel_size * dilation - dilation) / 2) | |
def init_weights(m, mean=0.0, std=0.01): | |
classname = m.__class__.__name__ | |
if classname.find("Conv") != -1: | |
m.weight.data.normal_(mean, std) | |
# Repetition Aware Sampling in VALL-E 2 | |
def ras_sampling(weighted_scores, decoded_tokens, sampling, top_p=0.8, top_k=25, win_size=10, tau_r=0.1): | |
top_ids = nucleus_sampling(weighted_scores, top_p=top_p, top_k=top_k) | |
rep_num = (torch.tensor(decoded_tokens[-win_size:]).to(weighted_scores.device) == top_ids).sum().item() | |
if rep_num >= win_size * tau_r: | |
top_ids = random_sampling(weighted_scores, decoded_tokens, sampling) | |
return top_ids | |
def nucleus_sampling(weighted_scores, top_p=0.8, top_k=25): | |
prob, indices = [], [] | |
cum_prob = 0.0 | |
sorted_value, sorted_idx = weighted_scores.softmax(dim=0).sort(descending=True, stable=True) | |
for i in range(len(sorted_idx)): | |
# sampling both top-p and numbers. | |
if cum_prob < top_p and len(prob) < top_k: | |
cum_prob += sorted_value[i] | |
prob.append(sorted_value[i]) | |
indices.append(sorted_idx[i]) | |
else: | |
break | |
prob = torch.tensor(prob).to(weighted_scores) | |
indices = torch.tensor(indices, dtype=torch.long).to(weighted_scores.device) | |
top_ids = indices[prob.multinomial(1, replacement=True)] | |
return top_ids | |
def random_sampling(weighted_scores, decoded_tokens, sampling): | |
top_ids = weighted_scores.softmax(dim=0).multinomial(1, replacement=True) | |
return top_ids | |
def fade_in_out(fade_in_mel, fade_out_mel, window): | |
device = fade_in_mel.device | |
fade_in_mel, fade_out_mel = fade_in_mel.cpu(), fade_out_mel.cpu() | |
mel_overlap_len = int(window.shape[0] / 2) | |
if fade_in_mel.device == torch.device('cpu'): | |
fade_in_mel = fade_in_mel.clone() | |
fade_in_mel[..., :mel_overlap_len] = fade_in_mel[..., :mel_overlap_len] * window[:mel_overlap_len] + \ | |
fade_out_mel[..., -mel_overlap_len:] * window[mel_overlap_len:] | |
return fade_in_mel.to(device) | |
def set_all_random_seed(seed): | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
def mask_to_bias(mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor: | |
assert mask.dtype == torch.bool | |
assert dtype in [torch.float32, torch.bfloat16, torch.float16] | |
mask = mask.to(dtype) | |
# attention mask bias | |
# NOTE(Mddct): torch.finfo jit issues | |
# chunk_masks = (1.0 - chunk_masks) * torch.finfo(dtype).min | |
mask = (1.0 - mask) * torch.finfo(dtype).min | |
return mask |