Spaces:
Running
on
L4
Running
on
L4
# Copyright (c) 2019 Shigeki Karita | |
# 2020 Mobvoi Inc (Binbin Zhang) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Decoder self-attention layer definition.""" | |
from typing import Optional, Tuple | |
import torch | |
from torch import nn | |
class DecoderLayer(nn.Module): | |
"""Single decoder layer module. | |
Args: | |
size (int): Input dimension. | |
self_attn (torch.nn.Module): Self-attention module instance. | |
`MultiHeadedAttention` instance can be used as the argument. | |
src_attn (torch.nn.Module): Inter-attention module instance. | |
`MultiHeadedAttention` instance can be used as the argument. | |
If `None` is passed, Inter-attention is not used, such as | |
CIF, GPT, and other decoder only model. | |
feed_forward (torch.nn.Module): Feed-forward module instance. | |
`PositionwiseFeedForward` instance can be used as the argument. | |
dropout_rate (float): Dropout rate. | |
normalize_before (bool): | |
True: use layer_norm before each sub-block. | |
False: to use layer_norm after each sub-block. | |
""" | |
def __init__( | |
self, | |
size: int, | |
self_attn: nn.Module, | |
src_attn: Optional[nn.Module], | |
feed_forward: nn.Module, | |
dropout_rate: float, | |
normalize_before: bool = True, | |
): | |
"""Construct an DecoderLayer object.""" | |
super().__init__() | |
self.size = size | |
self.self_attn = self_attn | |
self.src_attn = src_attn | |
self.feed_forward = feed_forward | |
self.norm1 = nn.LayerNorm(size, eps=1e-5) | |
self.norm2 = nn.LayerNorm(size, eps=1e-5) | |
self.norm3 = nn.LayerNorm(size, eps=1e-5) | |
self.dropout = nn.Dropout(dropout_rate) | |
self.normalize_before = normalize_before | |
def forward( | |
self, | |
tgt: torch.Tensor, | |
tgt_mask: torch.Tensor, | |
memory: torch.Tensor, | |
memory_mask: torch.Tensor, | |
cache: Optional[torch.Tensor] = None | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
"""Compute decoded features. | |
Args: | |
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size). | |
tgt_mask (torch.Tensor): Mask for input tensor | |
(#batch, maxlen_out). | |
memory (torch.Tensor): Encoded memory | |
(#batch, maxlen_in, size). | |
memory_mask (torch.Tensor): Encoded memory mask | |
(#batch, maxlen_in). | |
cache (torch.Tensor): cached tensors. | |
(#batch, maxlen_out - 1, size). | |
Returns: | |
torch.Tensor: Output tensor (#batch, maxlen_out, size). | |
torch.Tensor: Mask for output tensor (#batch, maxlen_out). | |
torch.Tensor: Encoded memory (#batch, maxlen_in, size). | |
torch.Tensor: Encoded memory mask (#batch, maxlen_in). | |
""" | |
residual = tgt | |
if self.normalize_before: | |
tgt = self.norm1(tgt) | |
if cache is None: | |
tgt_q = tgt | |
tgt_q_mask = tgt_mask | |
else: | |
# compute only the last frame query keeping dim: max_time_out -> 1 | |
assert cache.shape == ( | |
tgt.shape[0], | |
tgt.shape[1] - 1, | |
self.size, | |
), "{cache.shape} == {(tgt.shape[0], tgt.shape[1] - 1, self.size)}" | |
tgt_q = tgt[:, -1:, :] | |
residual = residual[:, -1:, :] | |
tgt_q_mask = tgt_mask[:, -1:, :] | |
x = residual + self.dropout( | |
self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)[0]) | |
if not self.normalize_before: | |
x = self.norm1(x) | |
if self.src_attn is not None: | |
residual = x | |
if self.normalize_before: | |
x = self.norm2(x) | |
x = residual + self.dropout( | |
self.src_attn(x, memory, memory, memory_mask)[0]) | |
if not self.normalize_before: | |
x = self.norm2(x) | |
residual = x | |
if self.normalize_before: | |
x = self.norm3(x) | |
x = residual + self.dropout(self.feed_forward(x)) | |
if not self.normalize_before: | |
x = self.norm3(x) | |
if cache is not None: | |
x = torch.cat([cache, x], dim=1) | |
return x, tgt_mask, memory, memory_mask | |