Spaces:
Running
on
L4
Running
on
L4
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang, Di Wu) | |
# 2024 Alibaba Inc (Xiang Lyu) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Modified from ESPnet(https://github.com/espnet/espnet) | |
"""Decoder definition.""" | |
from typing import Tuple, List, Optional | |
import torch | |
import torch.utils.checkpoint as ckpt | |
import logging | |
from cosyvoice.transformer.decoder_layer import DecoderLayer | |
from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward | |
from cosyvoice.utils.class_utils import ( | |
COSYVOICE_EMB_CLASSES, | |
COSYVOICE_ATTENTION_CLASSES, | |
COSYVOICE_ACTIVATION_CLASSES, | |
) | |
from cosyvoice.utils.mask import (subsequent_mask, make_pad_mask) | |
class TransformerDecoder(torch.nn.Module): | |
"""Base class of Transfomer decoder module. | |
Args: | |
vocab_size: output dim | |
encoder_output_size: dimension of attention | |
attention_heads: the number of heads of multi head attention | |
linear_units: the hidden units number of position-wise feedforward | |
num_blocks: the number of decoder blocks | |
dropout_rate: dropout rate | |
self_attention_dropout_rate: dropout rate for attention | |
input_layer: input layer type | |
use_output_layer: whether to use output layer | |
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding | |
normalize_before: | |
True: use layer_norm before each sub-block of a layer. | |
False: use layer_norm after each sub-block of a layer. | |
src_attention: if false, encoder-decoder cross attention is not | |
applied, such as CIF model | |
key_bias: whether use bias in attention.linear_k, False for whisper models. | |
gradient_checkpointing: rerunning a forward-pass segment for each | |
checkpointed segment during backward. | |
tie_word_embedding: Tie or clone module weights depending of whether we are | |
using TorchScript or not | |
""" | |
def __init__( | |
self, | |
vocab_size: int, | |
encoder_output_size: int, | |
attention_heads: int = 4, | |
linear_units: int = 2048, | |
num_blocks: int = 6, | |
dropout_rate: float = 0.1, | |
positional_dropout_rate: float = 0.1, | |
self_attention_dropout_rate: float = 0.0, | |
src_attention_dropout_rate: float = 0.0, | |
input_layer: str = "embed", | |
use_output_layer: bool = True, | |
normalize_before: bool = True, | |
src_attention: bool = True, | |
key_bias: bool = True, | |
activation_type: str = "relu", | |
gradient_checkpointing: bool = False, | |
tie_word_embedding: bool = False, | |
): | |
super().__init__() | |
attention_dim = encoder_output_size | |
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]() | |
self.embed = torch.nn.Sequential( | |
torch.nn.Identity() if input_layer == "no_pos" else | |
torch.nn.Embedding(vocab_size, attention_dim), | |
COSYVOICE_EMB_CLASSES[input_layer](attention_dim, | |
positional_dropout_rate), | |
) | |
self.normalize_before = normalize_before | |
self.after_norm = torch.nn.LayerNorm(attention_dim, eps=1e-5) | |
self.use_output_layer = use_output_layer | |
if use_output_layer: | |
self.output_layer = torch.nn.Linear(attention_dim, vocab_size) | |
else: | |
self.output_layer = torch.nn.Identity() | |
self.num_blocks = num_blocks | |
self.decoders = torch.nn.ModuleList([ | |
DecoderLayer( | |
attention_dim, | |
COSYVOICE_ATTENTION_CLASSES["selfattn"]( | |
attention_heads, attention_dim, | |
self_attention_dropout_rate, key_bias), | |
COSYVOICE_ATTENTION_CLASSES["selfattn"]( | |
attention_heads, attention_dim, src_attention_dropout_rate, | |
key_bias) if src_attention else None, | |
PositionwiseFeedForward(attention_dim, linear_units, | |
dropout_rate, activation), | |
dropout_rate, | |
normalize_before, | |
) for _ in range(self.num_blocks) | |
]) | |
self.gradient_checkpointing = gradient_checkpointing | |
self.tie_word_embedding = tie_word_embedding | |
def forward( | |
self, | |
memory: torch.Tensor, | |
memory_mask: torch.Tensor, | |
ys_in_pad: torch.Tensor, | |
ys_in_lens: torch.Tensor, | |
r_ys_in_pad: torch.Tensor = torch.empty(0), | |
reverse_weight: float = 0.0, | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
"""Forward decoder. | |
Args: | |
memory: encoded memory, float32 (batch, maxlen_in, feat) | |
memory_mask: encoder memory mask, (batch, 1, maxlen_in) | |
ys_in_pad: padded input token ids, int64 (batch, maxlen_out) | |
ys_in_lens: input lengths of this batch (batch) | |
r_ys_in_pad: not used in transformer decoder, in order to unify api | |
with bidirectional decoder | |
reverse_weight: not used in transformer decoder, in order to unify | |
api with bidirectional decode | |
Returns: | |
(tuple): tuple containing: | |
x: decoded token score before softmax (batch, maxlen_out, | |
vocab_size) if use_output_layer is True, | |
torch.tensor(0.0), in order to unify api with bidirectional decoder | |
olens: (batch, ) | |
NOTE(xcsong): | |
We pass the `__call__` method of the modules instead of `forward` to the | |
checkpointing API because `__call__` attaches all the hooks of the module. | |
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2 | |
""" | |
tgt = ys_in_pad | |
maxlen = tgt.size(1) | |
# tgt_mask: (B, 1, L) | |
tgt_mask = ~make_pad_mask(ys_in_lens, maxlen).unsqueeze(1) | |
tgt_mask = tgt_mask.to(tgt.device) | |
# m: (1, L, L) | |
m = subsequent_mask(tgt_mask.size(-1), | |
device=tgt_mask.device).unsqueeze(0) | |
# tgt_mask: (B, L, L) | |
tgt_mask = tgt_mask & m | |
x, _ = self.embed(tgt) | |
if self.gradient_checkpointing and self.training: | |
x = self.forward_layers_checkpointed(x, tgt_mask, memory, | |
memory_mask) | |
else: | |
x = self.forward_layers(x, tgt_mask, memory, memory_mask) | |
if self.normalize_before: | |
x = self.after_norm(x) | |
if self.use_output_layer: | |
x = self.output_layer(x) | |
olens = tgt_mask.sum(1) | |
return x, torch.tensor(0.0), olens | |
def forward_layers(self, x: torch.Tensor, tgt_mask: torch.Tensor, | |
memory: torch.Tensor, | |
memory_mask: torch.Tensor) -> torch.Tensor: | |
for layer in self.decoders: | |
x, tgt_mask, memory, memory_mask = layer(x, tgt_mask, memory, | |
memory_mask) | |
return x | |
def forward_layers_checkpointed(self, x: torch.Tensor, | |
tgt_mask: torch.Tensor, | |
memory: torch.Tensor, | |
memory_mask: torch.Tensor) -> torch.Tensor: | |
for layer in self.decoders: | |
x, tgt_mask, memory, memory_mask = ckpt.checkpoint( | |
layer.__call__, x, tgt_mask, memory, memory_mask) | |
return x | |
def forward_one_step( | |
self, | |
memory: torch.Tensor, | |
memory_mask: torch.Tensor, | |
tgt: torch.Tensor, | |
tgt_mask: torch.Tensor, | |
cache: Optional[List[torch.Tensor]] = None, | |
) -> Tuple[torch.Tensor, List[torch.Tensor]]: | |
"""Forward one step. | |
This is only used for decoding. | |
Args: | |
memory: encoded memory, float32 (batch, maxlen_in, feat) | |
memory_mask: encoded memory mask, (batch, 1, maxlen_in) | |
tgt: input token ids, int64 (batch, maxlen_out) | |
tgt_mask: input token mask, (batch, maxlen_out) | |
dtype=torch.uint8 in PyTorch 1.2- | |
dtype=torch.bool in PyTorch 1.2+ (include 1.2) | |
cache: cached output list of (batch, max_time_out-1, size) | |
Returns: | |
y, cache: NN output value and cache per `self.decoders`. | |
y.shape` is (batch, maxlen_out, token) | |
""" | |
x, _ = self.embed(tgt) | |
new_cache = [] | |
for i, decoder in enumerate(self.decoders): | |
if cache is None: | |
c = None | |
else: | |
c = cache[i] | |
x, tgt_mask, memory, memory_mask = decoder(x, | |
tgt_mask, | |
memory, | |
memory_mask, | |
cache=c) | |
new_cache.append(x) | |
if self.normalize_before: | |
y = self.after_norm(x[:, -1]) | |
else: | |
y = x[:, -1] | |
if self.use_output_layer: | |
y = torch.log_softmax(self.output_layer(y), dim=-1) | |
return y, new_cache | |
def tie_or_clone_weights(self, jit_mode: bool = True): | |
"""Tie or clone module weights (between word_emb and output_layer) | |
depending of whether we are using TorchScript or not""" | |
if not self.use_output_layer: | |
return | |
if jit_mode: | |
logging.info("clone emb.weight to output.weight") | |
self.output_layer.weight = torch.nn.Parameter( | |
self.embed[0].weight.clone()) | |
else: | |
logging.info("tie emb.weight with output.weight") | |
self.output_layer.weight = self.embed[0].weight | |
if getattr(self.output_layer, "bias", None) is not None: | |
self.output_layer.bias.data = torch.nn.functional.pad( | |
self.output_layer.bias.data, | |
( | |
0, | |
self.output_layer.weight.shape[0] - | |
self.output_layer.bias.shape[0], | |
), | |
"constant", | |
0, | |
) | |
class BiTransformerDecoder(torch.nn.Module): | |
"""Base class of Transfomer decoder module. | |
Args: | |
vocab_size: output dim | |
encoder_output_size: dimension of attention | |
attention_heads: the number of heads of multi head attention | |
linear_units: the hidden units number of position-wise feedforward | |
num_blocks: the number of decoder blocks | |
r_num_blocks: the number of right to left decoder blocks | |
dropout_rate: dropout rate | |
self_attention_dropout_rate: dropout rate for attention | |
input_layer: input layer type | |
use_output_layer: whether to use output layer | |
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding | |
normalize_before: | |
True: use layer_norm before each sub-block of a layer. | |
False: use layer_norm after each sub-block of a layer. | |
key_bias: whether use bias in attention.linear_k, False for whisper models. | |
""" | |
def __init__( | |
self, | |
vocab_size: int, | |
encoder_output_size: int, | |
attention_heads: int = 4, | |
linear_units: int = 2048, | |
num_blocks: int = 6, | |
r_num_blocks: int = 0, | |
dropout_rate: float = 0.1, | |
positional_dropout_rate: float = 0.1, | |
self_attention_dropout_rate: float = 0.0, | |
src_attention_dropout_rate: float = 0.0, | |
input_layer: str = "embed", | |
use_output_layer: bool = True, | |
normalize_before: bool = True, | |
key_bias: bool = True, | |
gradient_checkpointing: bool = False, | |
tie_word_embedding: bool = False, | |
): | |
super().__init__() | |
self.tie_word_embedding = tie_word_embedding | |
self.left_decoder = TransformerDecoder( | |
vocab_size, | |
encoder_output_size, | |
attention_heads, | |
linear_units, | |
num_blocks, | |
dropout_rate, | |
positional_dropout_rate, | |
self_attention_dropout_rate, | |
src_attention_dropout_rate, | |
input_layer, | |
use_output_layer, | |
normalize_before, | |
key_bias=key_bias, | |
gradient_checkpointing=gradient_checkpointing, | |
tie_word_embedding=tie_word_embedding) | |
self.right_decoder = TransformerDecoder( | |
vocab_size, | |
encoder_output_size, | |
attention_heads, | |
linear_units, | |
r_num_blocks, | |
dropout_rate, | |
positional_dropout_rate, | |
self_attention_dropout_rate, | |
src_attention_dropout_rate, | |
input_layer, | |
use_output_layer, | |
normalize_before, | |
key_bias=key_bias, | |
gradient_checkpointing=gradient_checkpointing, | |
tie_word_embedding=tie_word_embedding) | |
def forward( | |
self, | |
memory: torch.Tensor, | |
memory_mask: torch.Tensor, | |
ys_in_pad: torch.Tensor, | |
ys_in_lens: torch.Tensor, | |
r_ys_in_pad: torch.Tensor, | |
reverse_weight: float = 0.0, | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
"""Forward decoder. | |
Args: | |
memory: encoded memory, float32 (batch, maxlen_in, feat) | |
memory_mask: encoder memory mask, (batch, 1, maxlen_in) | |
ys_in_pad: padded input token ids, int64 (batch, maxlen_out) | |
ys_in_lens: input lengths of this batch (batch) | |
r_ys_in_pad: padded input token ids, int64 (batch, maxlen_out), | |
used for right to left decoder | |
reverse_weight: used for right to left decoder | |
Returns: | |
(tuple): tuple containing: | |
x: decoded token score before softmax (batch, maxlen_out, | |
vocab_size) if use_output_layer is True, | |
r_x: x: decoded token score (right to left decoder) | |
before softmax (batch, maxlen_out, vocab_size) | |
if use_output_layer is True, | |
olens: (batch, ) | |
""" | |
l_x, _, olens = self.left_decoder(memory, memory_mask, ys_in_pad, | |
ys_in_lens) | |
r_x = torch.tensor(0.0) | |
if reverse_weight > 0.0: | |
r_x, _, olens = self.right_decoder(memory, memory_mask, | |
r_ys_in_pad, ys_in_lens) | |
return l_x, r_x, olens | |
def forward_one_step( | |
self, | |
memory: torch.Tensor, | |
memory_mask: torch.Tensor, | |
tgt: torch.Tensor, | |
tgt_mask: torch.Tensor, | |
cache: Optional[List[torch.Tensor]] = None, | |
) -> Tuple[torch.Tensor, List[torch.Tensor]]: | |
"""Forward one step. | |
This is only used for decoding. | |
Args: | |
memory: encoded memory, float32 (batch, maxlen_in, feat) | |
memory_mask: encoded memory mask, (batch, 1, maxlen_in) | |
tgt: input token ids, int64 (batch, maxlen_out) | |
tgt_mask: input token mask, (batch, maxlen_out) | |
dtype=torch.uint8 in PyTorch 1.2- | |
dtype=torch.bool in PyTorch 1.2+ (include 1.2) | |
cache: cached output list of (batch, max_time_out-1, size) | |
Returns: | |
y, cache: NN output value and cache per `self.decoders`. | |
y.shape` is (batch, maxlen_out, token) | |
""" | |
return self.left_decoder.forward_one_step(memory, memory_mask, tgt, | |
tgt_mask, cache) | |
def tie_or_clone_weights(self, jit_mode: bool = True): | |
"""Tie or clone module weights (between word_emb and output_layer) | |
depending of whether we are using TorchScript or not""" | |
self.left_decoder.tie_or_clone_weights(jit_mode) | |
self.right_decoder.tie_or_clone_weights(jit_mode) | |