Spaces:
Running
on
L4
Running
on
L4
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Tuple | |
import torch.nn as nn | |
import torch | |
from torch.nn import functional as F | |
from cosyvoice.utils.mask import make_pad_mask | |
class InterpolateRegulator(nn.Module): | |
def __init__( | |
self, | |
channels: int, | |
sampling_ratios: Tuple, | |
out_channels: int = None, | |
groups: int = 1, | |
): | |
super().__init__() | |
self.sampling_ratios = sampling_ratios | |
out_channels = out_channels or channels | |
model = nn.ModuleList([]) | |
if len(sampling_ratios) > 0: | |
for _ in sampling_ratios: | |
module = nn.Conv1d(channels, channels, 3, 1, 1) | |
norm = nn.GroupNorm(groups, channels) | |
act = nn.Mish() | |
model.extend([module, norm, act]) | |
model.append( | |
nn.Conv1d(channels, out_channels, 1, 1) | |
) | |
self.model = nn.Sequential(*model) | |
def forward(self, x, ylens=None): | |
# x in (B, T, D) | |
mask = (~make_pad_mask(ylens)).to(x).unsqueeze(-1) | |
x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='linear') | |
out = self.model(x).transpose(1, 2).contiguous() | |
olens = ylens | |
return out * mask, olens | |
def inference(self, x1, x2, mel_len1, mel_len2, input_frame_rate=50): | |
# in inference mode, interploate prompt token and token(head/mid/tail) seprately, so we can get a clear separation point of mel | |
# x in (B, T, D) | |
if x2.shape[1] > 40: | |
x2_head = F.interpolate(x2[:, :20].transpose(1, 2).contiguous(), size=int(20 / input_frame_rate * 22050 / 256), mode='linear') | |
x2_mid = F.interpolate(x2[:, 20:-20].transpose(1, 2).contiguous(), size=mel_len2 - int(20 / input_frame_rate * 22050 / 256) * 2, | |
mode='linear') | |
x2_tail = F.interpolate(x2[:, -20:].transpose(1, 2).contiguous(), size=int(20 / input_frame_rate * 22050 / 256), mode='linear') | |
x2 = torch.concat([x2_head, x2_mid, x2_tail], dim=2) | |
else: | |
x2 = F.interpolate(x2.transpose(1, 2).contiguous(), size=mel_len2, mode='linear') | |
if x1.shape[1] != 0: | |
x1 = F.interpolate(x1.transpose(1, 2).contiguous(), size=mel_len1, mode='linear') | |
x = torch.concat([x1, x2], dim=2) | |
else: | |
x = x2 | |
out = self.model(x).transpose(1, 2).contiguous() | |
return out, mel_len1 + mel_len2 | |