Spaces:
Running
on
L4
Running
on
L4
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import onnxruntime | |
import torch | |
import torch.nn.functional as F | |
from matcha.models.components.flow_matching import BASECFM | |
class ConditionalCFM(BASECFM): | |
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None): | |
super().__init__( | |
n_feats=in_channels, | |
cfm_params=cfm_params, | |
n_spks=n_spks, | |
spk_emb_dim=spk_emb_dim, | |
) | |
self.t_scheduler = cfm_params.t_scheduler | |
self.training_cfg_rate = cfm_params.training_cfg_rate | |
self.inference_cfg_rate = cfm_params.inference_cfg_rate | |
in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0) | |
# Just change the architecture of the estimator here | |
self.estimator = estimator | |
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, prompt_len=0, flow_cache=torch.zeros(1, 80, 0, 2)): | |
"""Forward diffusion | |
Args: | |
mu (torch.Tensor): output of encoder | |
shape: (batch_size, n_feats, mel_timesteps) | |
mask (torch.Tensor): output_mask | |
shape: (batch_size, 1, mel_timesteps) | |
n_timesteps (int): number of diffusion steps | |
temperature (float, optional): temperature for scaling noise. Defaults to 1.0. | |
spks (torch.Tensor, optional): speaker ids. Defaults to None. | |
shape: (batch_size, spk_emb_dim) | |
cond: Not used but kept for future purposes | |
Returns: | |
sample: generated mel-spectrogram | |
shape: (batch_size, n_feats, mel_timesteps) | |
""" | |
z = torch.randn_like(mu) * temperature | |
cache_size = flow_cache.shape[2] | |
# fix prompt and overlap part mu and z | |
if cache_size != 0: | |
z[:, :, :cache_size] = flow_cache[:, :, :, 0] | |
mu[:, :, :cache_size] = flow_cache[:, :, :, 1] | |
z_cache = torch.concat([z[:, :, :prompt_len], z[:, :, -34:]], dim=2) | |
mu_cache = torch.concat([mu[:, :, :prompt_len], mu[:, :, -34:]], dim=2) | |
flow_cache = torch.stack([z_cache, mu_cache], dim=-1) | |
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype) | |
if self.t_scheduler == 'cosine': | |
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi) | |
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), flow_cache | |
def solve_euler(self, x, t_span, mu, mask, spks, cond): | |
""" | |
Fixed euler solver for ODEs. | |
Args: | |
x (torch.Tensor): random noise | |
t_span (torch.Tensor): n_timesteps interpolated | |
shape: (n_timesteps + 1,) | |
mu (torch.Tensor): output of encoder | |
shape: (batch_size, n_feats, mel_timesteps) | |
mask (torch.Tensor): output_mask | |
shape: (batch_size, 1, mel_timesteps) | |
spks (torch.Tensor, optional): speaker ids. Defaults to None. | |
shape: (batch_size, spk_emb_dim) | |
cond: Not used but kept for future purposes | |
""" | |
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0] | |
t = t.unsqueeze(dim=0) | |
# I am storing this because I can later plot it by putting a debugger here and saving it to a file | |
# Or in future might add like a return_all_steps flag | |
sol = [] | |
if self.inference_cfg_rate > 0: | |
# Do not use concat, it may cause memory format changed and trt infer with wrong results! | |
x_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype) | |
mask_in = torch.zeros([2, 1, x.size(2)], device=x.device, dtype=x.dtype) | |
mu_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype) | |
t_in = torch.zeros([2], device=x.device, dtype=x.dtype) | |
spks_in = torch.zeros([2, 80], device=x.device, dtype=x.dtype) | |
cond_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype) | |
else: | |
x_in, mask_in, mu_in, t_in, spks_in, cond_in = x, mask, mu, t, spks, cond | |
for step in range(1, len(t_span)): | |
# Classifier-Free Guidance inference introduced in VoiceBox | |
if self.inference_cfg_rate > 0: | |
x_in[:] = x | |
mask_in[:] = mask | |
mu_in[0] = mu | |
t_in[:] = t.unsqueeze(0) | |
spks_in[0] = spks | |
cond_in[0] = cond | |
else: | |
x_in, mask_in, mu_in, t_in, spks_in, cond_in = x, mask, mu, t, spks, cond | |
dphi_dt = self.forward_estimator( | |
x_in, mask_in, | |
mu_in, t_in, | |
spks_in, | |
cond_in | |
) | |
if self.inference_cfg_rate > 0: | |
dphi_dt, cfg_dphi_dt = torch.split(dphi_dt, [x.size(0), x.size(0)], dim=0) | |
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt) | |
x = x + dt * dphi_dt | |
t = t + dt | |
sol.append(x) | |
if step < len(t_span) - 1: | |
dt = t_span[step + 1] - t | |
return sol[-1].float() | |
def forward_estimator(self, x, mask, mu, t, spks, cond): | |
if isinstance(self.estimator, torch.nn.Module): | |
return self.estimator.forward(x, mask, mu, t, spks, cond) | |
elif isinstance(self.estimator, onnxruntime.InferenceSession): | |
ort_inputs = { | |
'x': x.cpu().numpy(), | |
'mask': mask.cpu().numpy(), | |
'mu': mu.cpu().numpy(), | |
't': t.cpu().numpy(), | |
'spks': spks.cpu().numpy(), | |
'cond': cond.cpu().numpy() | |
} | |
output = self.estimator.run(None, ort_inputs)[0] | |
return torch.tensor(output, dtype=x.dtype, device=x.device) | |
else: | |
self.estimator.set_input_shape('x', (2, 80, x.size(2))) | |
self.estimator.set_input_shape('mask', (2, 1, x.size(2))) | |
self.estimator.set_input_shape('mu', (2, 80, x.size(2))) | |
self.estimator.set_input_shape('t', (2,)) | |
self.estimator.set_input_shape('spks', (2, 80)) | |
self.estimator.set_input_shape('cond', (2, 80, x.size(2))) | |
# run trt engine | |
self.estimator.execute_v2([x.contiguous().data_ptr(), | |
mask.contiguous().data_ptr(), | |
mu.contiguous().data_ptr(), | |
t.contiguous().data_ptr(), | |
spks.contiguous().data_ptr(), | |
cond.contiguous().data_ptr(), | |
x.data_ptr()]) | |
return x | |
def compute_loss(self, x1, mask, mu, spks=None, cond=None): | |
"""Computes diffusion loss | |
Args: | |
x1 (torch.Tensor): Target | |
shape: (batch_size, n_feats, mel_timesteps) | |
mask (torch.Tensor): target mask | |
shape: (batch_size, 1, mel_timesteps) | |
mu (torch.Tensor): output of encoder | |
shape: (batch_size, n_feats, mel_timesteps) | |
spks (torch.Tensor, optional): speaker embedding. Defaults to None. | |
shape: (batch_size, spk_emb_dim) | |
Returns: | |
loss: conditional flow matching loss | |
y: conditional flow | |
shape: (batch_size, n_feats, mel_timesteps) | |
""" | |
b, _, t = mu.shape | |
# random timestep | |
t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype) | |
if self.t_scheduler == 'cosine': | |
t = 1 - torch.cos(t * 0.5 * torch.pi) | |
# sample noise p(x_0) | |
z = torch.randn_like(x1) | |
y = (1 - (1 - self.sigma_min) * t) * z + t * x1 | |
u = x1 - (1 - self.sigma_min) * z | |
# during training, we randomly drop condition to trade off mode coverage and sample fidelity | |
if self.training_cfg_rate > 0: | |
cfg_mask = torch.rand(b, device=x1.device) > self.training_cfg_rate | |
mu = mu * cfg_mask.view(-1, 1, 1) | |
spks = spks * cfg_mask.view(-1, 1) | |
cond = cond * cfg_mask.view(-1, 1, 1) | |
pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond) | |
loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1]) | |
return loss, y | |
class CausalConditionalCFM(ConditionalCFM): | |
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None): | |
super().__init__(in_channels, cfm_params, n_spks, spk_emb_dim, estimator) | |
self.rand_noise = torch.randn([1, 80, 50 * 300]) | |
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None): | |
"""Forward diffusion | |
Args: | |
mu (torch.Tensor): output of encoder | |
shape: (batch_size, n_feats, mel_timesteps) | |
mask (torch.Tensor): output_mask | |
shape: (batch_size, 1, mel_timesteps) | |
n_timesteps (int): number of diffusion steps | |
temperature (float, optional): temperature for scaling noise. Defaults to 1.0. | |
spks (torch.Tensor, optional): speaker ids. Defaults to None. | |
shape: (batch_size, spk_emb_dim) | |
cond: Not used but kept for future purposes | |
Returns: | |
sample: generated mel-spectrogram | |
shape: (batch_size, n_feats, mel_timesteps) | |
""" | |
z = self.rand_noise[:, :, :mu.size(2)].to(mu.device) * temperature | |
if self.fp16 is True: | |
z = z.half() | |
# fix prompt and overlap part mu and z | |
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype) | |
if self.t_scheduler == 'cosine': | |
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi) | |
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), None | |