Spaces:
Running
on
L4
Running
on
L4
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import print_function | |
import argparse | |
import logging | |
logging.getLogger('matplotlib').setLevel(logging.WARNING) | |
import os | |
import sys | |
import torch | |
ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.append('{}/../..'.format(ROOT_DIR)) | |
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR)) | |
from cosyvoice.cli.cosyvoice import CosyVoice | |
def get_args(): | |
parser = argparse.ArgumentParser(description='export your model for deployment') | |
parser.add_argument('--model_dir', | |
type=str, | |
default='pretrained_models/CosyVoice-300M', | |
help='local path') | |
args = parser.parse_args() | |
print(args) | |
return args | |
def main(): | |
args = get_args() | |
logging.basicConfig(level=logging.DEBUG, | |
format='%(asctime)s %(levelname)s %(message)s') | |
torch._C._jit_set_fusion_strategy([('STATIC', 1)]) | |
torch._C._jit_set_profiling_mode(False) | |
torch._C._jit_set_profiling_executor(False) | |
cosyvoice = CosyVoice(args.model_dir, load_jit=False, load_onnx=False) | |
# 1. export llm text_encoder | |
llm_text_encoder = cosyvoice.model.llm.text_encoder.half() | |
script = torch.jit.script(llm_text_encoder) | |
script = torch.jit.freeze(script) | |
script = torch.jit.optimize_for_inference(script) | |
script.save('{}/llm.text_encoder.fp16.zip'.format(args.model_dir)) | |
# 2. export llm llm | |
llm_llm = cosyvoice.model.llm.llm.half() | |
script = torch.jit.script(llm_llm) | |
script = torch.jit.freeze(script, preserved_attrs=['forward_chunk']) | |
script = torch.jit.optimize_for_inference(script) | |
script.save('{}/llm.llm.fp16.zip'.format(args.model_dir)) | |
# 3. export flow encoder | |
flow_encoder = cosyvoice.model.flow.encoder | |
script = torch.jit.script(flow_encoder) | |
script = torch.jit.freeze(script) | |
script = torch.jit.optimize_for_inference(script) | |
script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir)) | |
if __name__ == '__main__': | |
main() | |