Spaces:
Running
on
L4
Running
on
L4
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from functools import partial | |
import json | |
import onnxruntime | |
import torch | |
import numpy as np | |
import whisper | |
from typing import Callable | |
import torchaudio.compliance.kaldi as kaldi | |
import torchaudio | |
import os | |
import re | |
import inflect | |
try: | |
import ttsfrd | |
use_ttsfrd = True | |
except ImportError: | |
print("failed to import ttsfrd, use WeTextProcessing instead") | |
from tn.chinese.normalizer import Normalizer as ZhNormalizer | |
from tn.english.normalizer import Normalizer as EnNormalizer | |
use_ttsfrd = False | |
from cosyvoice.utils.frontend_utils import contains_chinese, replace_blank, replace_corner_mark, remove_bracket, spell_out_number, split_paragraph | |
class CosyVoiceFrontEnd: | |
def __init__(self, | |
get_tokenizer: Callable, | |
feat_extractor: Callable, | |
campplus_model: str, | |
speech_tokenizer_model: str, | |
spk2info: str = '', | |
instruct: bool = False, | |
allowed_special: str = 'all'): | |
self.tokenizer = get_tokenizer() | |
self.feat_extractor = feat_extractor | |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
option = onnxruntime.SessionOptions() | |
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL | |
option.intra_op_num_threads = 1 | |
self.campplus_session = onnxruntime.InferenceSession(campplus_model, sess_options=option, providers=["CPUExecutionProvider"]) | |
self.speech_tokenizer_session = onnxruntime.InferenceSession(speech_tokenizer_model, sess_options=option, | |
providers=["CUDAExecutionProvider" if torch.cuda.is_available() else | |
"CPUExecutionProvider"]) | |
if os.path.exists(spk2info): | |
self.spk2info = torch.load(spk2info, map_location=self.device) | |
else: | |
self.spk2info = {} | |
self.instruct = instruct | |
self.allowed_special = allowed_special | |
self.inflect_parser = inflect.engine() | |
self.use_ttsfrd = use_ttsfrd | |
if self.use_ttsfrd: | |
self.frd = ttsfrd.TtsFrontendEngine() | |
ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
assert self.frd.initialize('{}/../../pretrained_models/CosyVoice-ttsfrd/resource'.format(ROOT_DIR)) is True, \ | |
'failed to initialize ttsfrd resource' | |
self.frd.set_lang_type('pinyinvg') | |
else: | |
self.zh_tn_model = ZhNormalizer(remove_erhua=False, full_to_half=False) | |
self.en_tn_model = EnNormalizer() | |
def _extract_text_token(self, text): | |
text_token = self.tokenizer.encode(text, allowed_special=self.allowed_special) | |
text_token = torch.tensor([text_token], dtype=torch.int32).to(self.device) | |
text_token_len = torch.tensor([text_token.shape[1]], dtype=torch.int32).to(self.device) | |
return text_token, text_token_len | |
def _extract_speech_token(self, speech): | |
assert speech.shape[1] / 16000 <= 30, 'do not support extract speech token for audio longer than 30s' | |
feat = whisper.log_mel_spectrogram(speech, n_mels=128) | |
speech_token = self.speech_tokenizer_session.run(None, | |
{self.speech_tokenizer_session.get_inputs()[0].name: | |
feat.detach().cpu().numpy(), | |
self.speech_tokenizer_session.get_inputs()[1].name: | |
np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist() | |
speech_token = torch.tensor([speech_token], dtype=torch.int32).to(self.device) | |
speech_token_len = torch.tensor([speech_token.shape[1]], dtype=torch.int32).to(self.device) | |
return speech_token, speech_token_len | |
def _extract_spk_embedding(self, speech): | |
feat = kaldi.fbank(speech, | |
num_mel_bins=80, | |
dither=0, | |
sample_frequency=16000) | |
feat = feat - feat.mean(dim=0, keepdim=True) | |
embedding = self.campplus_session.run(None, | |
{self.campplus_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist() | |
embedding = torch.tensor([embedding]).to(self.device) | |
return embedding | |
def _extract_speech_feat(self, speech): | |
speech_feat = self.feat_extractor(speech).squeeze(dim=0).transpose(0, 1).to(self.device) | |
speech_feat = speech_feat.unsqueeze(dim=0) | |
speech_feat_len = torch.tensor([speech_feat.shape[1]], dtype=torch.int32).to(self.device) | |
return speech_feat, speech_feat_len | |
def text_normalize(self, text, split=True): | |
text = text.strip() | |
if contains_chinese(text): | |
if self.use_ttsfrd: | |
texts = [i["text"] for i in json.loads(self.frd.do_voicegen_frd(text))["sentences"]] | |
text = ''.join(texts) | |
else: | |
text = self.zh_tn_model.normalize(text) | |
text = text.replace("\n", "") | |
text = replace_blank(text) | |
text = replace_corner_mark(text) | |
text = text.replace(".", "。") | |
text = text.replace(" - ", ",") | |
text = remove_bracket(text) | |
text = re.sub(r'[,,、]+$', '。', text) | |
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80, | |
token_min_n=60, merge_len=20, comma_split=False)) | |
else: | |
if self.use_ttsfrd: | |
texts = [i["text"] for i in json.loads(self.frd.do_voicegen_frd(text))["sentences"]] | |
text = ''.join(texts) | |
else: | |
text = self.en_tn_model.normalize(text) | |
text = spell_out_number(text, self.inflect_parser) | |
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80, | |
token_min_n=60, merge_len=20, comma_split=False)) | |
if split is False: | |
return text | |
return texts | |
def frontend_sft(self, tts_text, spk_id): | |
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text) | |
embedding = self.spk2info[spk_id]['embedding'] | |
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, 'llm_embedding': embedding, 'flow_embedding': embedding} | |
return model_input | |
def frontend_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, resample_rate): | |
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text) | |
prompt_text_token, prompt_text_token_len = self._extract_text_token(prompt_text) | |
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k) | |
speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_resample) | |
speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k) | |
if resample_rate == 24000: | |
# cosyvoice2, force speech_feat % speech_token = 2 | |
token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1]) | |
speech_feat, speech_feat_len[:] = speech_feat[:, :2 * token_len], 2* token_len | |
speech_token, speech_token_len[:] = speech_token[:, :token_len], token_len | |
embedding = self._extract_spk_embedding(prompt_speech_16k) | |
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, | |
'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len, | |
'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len, | |
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len, | |
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len, | |
'llm_embedding': embedding, 'flow_embedding': embedding} | |
return model_input | |
def frontend_instruct2(self, tts_text, instruct_text, prompt_speech_16k, resample_rate): | |
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text) | |
prompt_text_token, prompt_text_token_len = self._extract_text_token(instruct_text + '<|endofprompt|>') | |
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k) | |
speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_resample) | |
speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k) | |
if resample_rate == 24000: | |
# cosyvoice2, force speech_feat % speech_token = 2 | |
token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1]) | |
speech_feat, speech_feat_len[:] = speech_feat[:, :2 * token_len], 2* token_len | |
speech_token, speech_token_len[:] = speech_token[:, :token_len], token_len | |
embedding = self._extract_spk_embedding(prompt_speech_16k) | |
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, | |
'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len, | |
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len, | |
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len, | |
'llm_embedding': embedding, 'flow_embedding': embedding} | |
return model_input | |
def frontend_cross_lingual(self, tts_text, prompt_speech_16k, resample_rate): | |
model_input = self.frontend_zero_shot(tts_text, '', prompt_speech_16k, resample_rate) | |
# in cross lingual mode, we remove prompt in llm | |
del model_input['prompt_text'] | |
del model_input['prompt_text_len'] | |
del model_input['llm_prompt_speech_token'] | |
del model_input['llm_prompt_speech_token_len'] | |
return model_input | |
def frontend_instruct(self, tts_text, spk_id, instruct_text): | |
model_input = self.frontend_sft(tts_text, spk_id) | |
# in instruct mode, we remove spk_embedding in llm due to information leakage | |
del model_input['llm_embedding'] | |
instruct_text_token, instruct_text_token_len = self._extract_text_token(instruct_text + '<endofprompt>') | |
model_input['prompt_text'] = instruct_text_token | |
model_input['prompt_text_len'] = instruct_text_token_len | |
return model_input | |
def frontend_vc(self, source_speech_16k, prompt_speech_16k, resample_rate): | |
prompt_speech_token, prompt_speech_token_len = self._extract_speech_token(prompt_speech_16k) | |
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k) | |
prompt_speech_feat, prompt_speech_feat_len = self._extract_speech_feat(prompt_speech_resample) | |
embedding = self._extract_spk_embedding(prompt_speech_16k) | |
source_speech_token, source_speech_token_len = self._extract_speech_token(source_speech_16k) | |
model_input = {'source_speech_token': source_speech_token, 'source_speech_token_len': source_speech_token_len, | |
'flow_prompt_speech_token': prompt_speech_token, 'flow_prompt_speech_token_len': prompt_speech_token_len, | |
'prompt_speech_feat': prompt_speech_feat, 'prompt_speech_feat_len': prompt_speech_feat_len, | |
'flow_embedding': embedding} | |
return model_input | |