File size: 10,323 Bytes
5b4c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import random
from typing import Dict, Optional
import torch
import torch.nn as nn
from torch.nn import functional as F
from omegaconf import DictConfig
from cosyvoice.utils.mask import make_pad_mask


class MaskedDiffWithXvec(torch.nn.Module):
    def __init__(self,
                 input_size: int = 512,
                 output_size: int = 80,
                 spk_embed_dim: int = 192,
                 output_type: str = "mel",
                 vocab_size: int = 4096,
                 input_frame_rate: int = 50,
                 only_mask_loss: bool = True,
                 encoder: torch.nn.Module = None,
                 length_regulator: torch.nn.Module = None,
                 decoder: torch.nn.Module = None,
                 decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1,
                                       'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
                                                                 'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
                                       'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
                                                          'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
                 mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
                                        'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
        super().__init__()
        self.input_size = input_size
        self.output_size = output_size
        self.decoder_conf = decoder_conf
        self.mel_feat_conf = mel_feat_conf
        self.vocab_size = vocab_size
        self.output_type = output_type
        self.input_frame_rate = input_frame_rate
        logging.info(f"input frame rate={self.input_frame_rate}")
        self.input_embedding = nn.Embedding(vocab_size, input_size)
        self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
        self.encoder = encoder
        self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
        self.decoder = decoder
        self.length_regulator = length_regulator
        self.only_mask_loss = only_mask_loss

    def forward(
            self,
            batch: dict,
            device: torch.device,
    ) -> Dict[str, Optional[torch.Tensor]]:
        token = batch['speech_token'].to(device)
        token_len = batch['speech_token_len'].to(device)
        feat = batch['speech_feat'].to(device)
        feat_len = batch['speech_feat_len'].to(device)
        embedding = batch['embedding'].to(device)

        # xvec projection
        embedding = F.normalize(embedding, dim=1)
        embedding = self.spk_embed_affine_layer(embedding)

        # concat text and prompt_text
        mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device)
        token = self.input_embedding(torch.clamp(token, min=0)) * mask

        # text encode
        h, h_lengths = self.encoder(token, token_len)
        h = self.encoder_proj(h)
        h, h_lengths = self.length_regulator(h, feat_len)

        # get conditions
        conds = torch.zeros(feat.shape, device=token.device)
        for i, j in enumerate(feat_len):
            if random.random() < 0.5:
                continue
            index = random.randint(0, int(0.3 * j))
            conds[i, :index] = feat[i, :index]
        conds = conds.transpose(1, 2)

        mask = (~make_pad_mask(feat_len)).to(h)
        feat = F.interpolate(feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest").squeeze(dim=1)
        loss, _ = self.decoder.compute_loss(
            feat.transpose(1, 2).contiguous(),
            mask.unsqueeze(1),
            h.transpose(1, 2).contiguous(),
            embedding,
            cond=conds
        )
        return {'loss': loss}

    @torch.inference_mode()
    def inference(self,
                  token,
                  token_len,
                  prompt_token,
                  prompt_token_len,
                  prompt_feat,
                  prompt_feat_len,
                  embedding,
                  flow_cache):
        assert token.shape[0] == 1
        # xvec projection
        embedding = F.normalize(embedding, dim=1)
        embedding = self.spk_embed_affine_layer(embedding)

        # concat text and prompt_text
        token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
        token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
        mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
        token = self.input_embedding(torch.clamp(token, min=0)) * mask

        # text encode
        h, h_lengths = self.encoder(token, token_len)
        h = self.encoder_proj(h)
        mel_len1, mel_len2 = prompt_feat.shape[1], int(token_len2 / self.input_frame_rate * 22050 / 256)
        h, h_lengths = self.length_regulator.inference(h[:, :token_len1], h[:, token_len1:], mel_len1, mel_len2, self.input_frame_rate)

        # get conditions
        conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device)
        conds[:, :mel_len1] = prompt_feat
        conds = conds.transpose(1, 2)

        mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
        feat, flow_cache = self.decoder(
            mu=h.transpose(1, 2).contiguous(),
            mask=mask.unsqueeze(1),
            spks=embedding,
            cond=conds,
            n_timesteps=10,
            prompt_len=mel_len1,
            flow_cache=flow_cache
        )
        feat = feat[:, :, mel_len1:]
        assert feat.shape[2] == mel_len2
        return feat, flow_cache


class CausalMaskedDiffWithXvec(torch.nn.Module):
    def __init__(self,
                 input_size: int = 512,
                 output_size: int = 80,
                 spk_embed_dim: int = 192,
                 output_type: str = "mel",
                 vocab_size: int = 4096,
                 input_frame_rate: int = 50,
                 only_mask_loss: bool = True,
                 token_mel_ratio: int = 2,
                 pre_lookahead_len: int = 3,
                 encoder: torch.nn.Module = None,
                 decoder: torch.nn.Module = None,
                 decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1,
                                       'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
                                                                 'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
                                       'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
                                                          'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
                 mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
                                        'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
        super().__init__()
        self.input_size = input_size
        self.output_size = output_size
        self.decoder_conf = decoder_conf
        self.mel_feat_conf = mel_feat_conf
        self.vocab_size = vocab_size
        self.output_type = output_type
        self.input_frame_rate = input_frame_rate
        logging.info(f"input frame rate={self.input_frame_rate}")
        self.input_embedding = nn.Embedding(vocab_size, input_size)
        self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
        self.encoder = encoder
        self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
        self.decoder = decoder
        self.only_mask_loss = only_mask_loss
        self.token_mel_ratio = token_mel_ratio
        self.pre_lookahead_len = pre_lookahead_len

    @torch.inference_mode()
    def inference(self,
                  token,
                  token_len,
                  prompt_token,
                  prompt_token_len,
                  prompt_feat,
                  prompt_feat_len,
                  embedding,
                  finalize):
        assert token.shape[0] == 1
        # xvec projection
        embedding = F.normalize(embedding, dim=1)
        embedding = self.spk_embed_affine_layer(embedding)

        # concat text and prompt_text
        token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
        token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
        mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
        token = self.input_embedding(torch.clamp(token, min=0)) * mask

        # text encode
        h, h_lengths = self.encoder(token, token_len)
        if finalize is False:
            h = h[:, :-self.pre_lookahead_len * self.token_mel_ratio]
        mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] -  prompt_feat.shape[1]
        h = self.encoder_proj(h)

        # get conditions
        conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device)
        conds[:, :mel_len1] = prompt_feat
        conds = conds.transpose(1, 2)

        mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
        feat, _ = self.decoder(
            mu=h.transpose(1, 2).contiguous(),
            mask=mask.unsqueeze(1),
            spks=embedding,
            cond=conds,
            n_timesteps=10
        )
        feat = feat[:, :, mel_len1:]
        assert feat.shape[2] == mel_len2
        return feat, None