Spaces:
Running
on
L4
Running
on
L4
File size: 10,323 Bytes
5b4c852 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import random
from typing import Dict, Optional
import torch
import torch.nn as nn
from torch.nn import functional as F
from omegaconf import DictConfig
from cosyvoice.utils.mask import make_pad_mask
class MaskedDiffWithXvec(torch.nn.Module):
def __init__(self,
input_size: int = 512,
output_size: int = 80,
spk_embed_dim: int = 192,
output_type: str = "mel",
vocab_size: int = 4096,
input_frame_rate: int = 50,
only_mask_loss: bool = True,
encoder: torch.nn.Module = None,
length_regulator: torch.nn.Module = None,
decoder: torch.nn.Module = None,
decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1,
'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
super().__init__()
self.input_size = input_size
self.output_size = output_size
self.decoder_conf = decoder_conf
self.mel_feat_conf = mel_feat_conf
self.vocab_size = vocab_size
self.output_type = output_type
self.input_frame_rate = input_frame_rate
logging.info(f"input frame rate={self.input_frame_rate}")
self.input_embedding = nn.Embedding(vocab_size, input_size)
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
self.encoder = encoder
self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
self.decoder = decoder
self.length_regulator = length_regulator
self.only_mask_loss = only_mask_loss
def forward(
self,
batch: dict,
device: torch.device,
) -> Dict[str, Optional[torch.Tensor]]:
token = batch['speech_token'].to(device)
token_len = batch['speech_token_len'].to(device)
feat = batch['speech_feat'].to(device)
feat_len = batch['speech_feat_len'].to(device)
embedding = batch['embedding'].to(device)
# xvec projection
embedding = F.normalize(embedding, dim=1)
embedding = self.spk_embed_affine_layer(embedding)
# concat text and prompt_text
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device)
token = self.input_embedding(torch.clamp(token, min=0)) * mask
# text encode
h, h_lengths = self.encoder(token, token_len)
h = self.encoder_proj(h)
h, h_lengths = self.length_regulator(h, feat_len)
# get conditions
conds = torch.zeros(feat.shape, device=token.device)
for i, j in enumerate(feat_len):
if random.random() < 0.5:
continue
index = random.randint(0, int(0.3 * j))
conds[i, :index] = feat[i, :index]
conds = conds.transpose(1, 2)
mask = (~make_pad_mask(feat_len)).to(h)
feat = F.interpolate(feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest").squeeze(dim=1)
loss, _ = self.decoder.compute_loss(
feat.transpose(1, 2).contiguous(),
mask.unsqueeze(1),
h.transpose(1, 2).contiguous(),
embedding,
cond=conds
)
return {'loss': loss}
@torch.inference_mode()
def inference(self,
token,
token_len,
prompt_token,
prompt_token_len,
prompt_feat,
prompt_feat_len,
embedding,
flow_cache):
assert token.shape[0] == 1
# xvec projection
embedding = F.normalize(embedding, dim=1)
embedding = self.spk_embed_affine_layer(embedding)
# concat text and prompt_text
token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
token = self.input_embedding(torch.clamp(token, min=0)) * mask
# text encode
h, h_lengths = self.encoder(token, token_len)
h = self.encoder_proj(h)
mel_len1, mel_len2 = prompt_feat.shape[1], int(token_len2 / self.input_frame_rate * 22050 / 256)
h, h_lengths = self.length_regulator.inference(h[:, :token_len1], h[:, token_len1:], mel_len1, mel_len2, self.input_frame_rate)
# get conditions
conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device)
conds[:, :mel_len1] = prompt_feat
conds = conds.transpose(1, 2)
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
feat, flow_cache = self.decoder(
mu=h.transpose(1, 2).contiguous(),
mask=mask.unsqueeze(1),
spks=embedding,
cond=conds,
n_timesteps=10,
prompt_len=mel_len1,
flow_cache=flow_cache
)
feat = feat[:, :, mel_len1:]
assert feat.shape[2] == mel_len2
return feat, flow_cache
class CausalMaskedDiffWithXvec(torch.nn.Module):
def __init__(self,
input_size: int = 512,
output_size: int = 80,
spk_embed_dim: int = 192,
output_type: str = "mel",
vocab_size: int = 4096,
input_frame_rate: int = 50,
only_mask_loss: bool = True,
token_mel_ratio: int = 2,
pre_lookahead_len: int = 3,
encoder: torch.nn.Module = None,
decoder: torch.nn.Module = None,
decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1,
'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
super().__init__()
self.input_size = input_size
self.output_size = output_size
self.decoder_conf = decoder_conf
self.mel_feat_conf = mel_feat_conf
self.vocab_size = vocab_size
self.output_type = output_type
self.input_frame_rate = input_frame_rate
logging.info(f"input frame rate={self.input_frame_rate}")
self.input_embedding = nn.Embedding(vocab_size, input_size)
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
self.encoder = encoder
self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
self.decoder = decoder
self.only_mask_loss = only_mask_loss
self.token_mel_ratio = token_mel_ratio
self.pre_lookahead_len = pre_lookahead_len
@torch.inference_mode()
def inference(self,
token,
token_len,
prompt_token,
prompt_token_len,
prompt_feat,
prompt_feat_len,
embedding,
finalize):
assert token.shape[0] == 1
# xvec projection
embedding = F.normalize(embedding, dim=1)
embedding = self.spk_embed_affine_layer(embedding)
# concat text and prompt_text
token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
token = self.input_embedding(torch.clamp(token, min=0)) * mask
# text encode
h, h_lengths = self.encoder(token, token_len)
if finalize is False:
h = h[:, :-self.pre_lookahead_len * self.token_mel_ratio]
mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] - prompt_feat.shape[1]
h = self.encoder_proj(h)
# get conditions
conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device)
conds[:, :mel_len1] = prompt_feat
conds = conds.transpose(1, 2)
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
feat, _ = self.decoder(
mu=h.transpose(1, 2).contiguous(),
mask=mask.unsqueeze(1),
spks=embedding,
cond=conds,
n_timesteps=10
)
feat = feat[:, :, mel_len1:]
assert feat.shape[2] == mel_len2
return feat, None |