Spaces:
Running
on
L4
Running
on
L4
File size: 6,768 Bytes
5b4c852 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import sys
import torch
def convert_llm(state_dict):
# 调整了lm的结构,把codec_lm.encoder作为llm,codec_lm.decoder作为decoder
keys = list(state_dict.keys())
for k in keys:
if k.startswith('codec_lm.encoder.'):
v = state_dict.pop(k)
k = k.replace('codec_lm.encoder.', 'llm.')
state_dict[k] = v
if k.startswith('codec_lm.decoder.'):
v = state_dict.pop(k)
k = k.replace('codec_lm.decoder.', 'llm_decoder.')
state_dict[k] = v
# espnet和wenet具体实现上的差异
keys = list(state_dict.keys())
for k in keys:
if k.startswith('text_encoder.embed.'):
v = state_dict.pop(k)
k = k.replace('text_encoder.embed.', 'text_encoder.embed.out.')
state_dict[k] = v
if k.startswith('llm.embed.'):
v = state_dict.pop(k)
k = k.replace('llm.embed.', 'llm.embed.out.')
state_dict[k] = v
keys = list(state_dict.keys())
for k in keys:
if k.startswith('text_enc_out_layer.'):
v = state_dict.pop(k)
k = k.replace('text_enc_out_layer.', 'text_encoder_affine_layer.')
state_dict[k] = v
if k.startswith('token_embedding.'):
v = state_dict.pop(k)
k = k.replace('token_embedding.', 'text_embedding.')
state_dict[k] = v
if k.startswith('xvec_proj.'):
v = state_dict.pop(k)
k = k.replace('xvec_proj.', 'spk_embed_affine_layer.')
state_dict[k] = v
if k.startswith('lm_embedding.'):
v = state_dict.pop(k)
k = k.replace('lm_embedding.', 'llm_embedding.')
state_dict[k] = v
if k.startswith('codec_embedder.'):
v = state_dict.pop(k)
k = k.replace('codec_embedder.', 'speech_embedding.')
state_dict[k] = v
# instruct少了spk embedding参数,加个全0上去
keys = list(state_dict.keys())
if 'spk_embed_affine_layer.weight' not in keys:
print('no spk_embed_affine_layer.weight, should be instruct model')
state_dict['spk_embed_affine_layer.weight'] = torch.zeros(1024, 192)
if 'spk_embed_affine_layer.bias' not in keys:
print('no spk_embed_affine_layer.bias, should be instruct model')
state_dict['spk_embed_affine_layer.bias'] = torch.zeros(1024)
return state_dict
def convert_hift(state_dict):
# 调整了cosyvoice中hifigan的结构,把f0_predictor放到generator里
keys = list(state_dict.keys())
for k in keys:
if k.startswith('decoder.'):
v = state_dict.pop(k)
k = k.replace('decoder.', '')
state_dict[k] = v
if k.startswith('generator.'):
v = state_dict.pop(k)
k = k.replace('generator.', '')
state_dict[k] = v
return state_dict
def convert_flow(state_dict):
keys = list(state_dict.keys())
for k in keys:
if k.startswith('encoder.embed.'):
v = state_dict.pop(k)
k = k.replace('encoder.embed.', 'encoder.embed.out.')
state_dict[k] = v
for k in keys:
if k.startswith('xvec_proj.'):
v = state_dict.pop(k)
k = k.replace('xvec_proj.', 'spk_embed_affine_layer.')
state_dict[k] = v
return state_dict
def convert_llm2(state_dict):
# 调整了lm的结构,把codec_lm.encoder作为llm,codec_lm.decoder作为decoder
keys = list(state_dict.keys())
for k in keys:
if k.startswith('codec_lm.encoder.'):
v = state_dict.pop(k)
k = k.replace('codec_lm.encoder.', 'llm.')
state_dict[k] = v
if k.startswith('codec_lm.decoder.'):
v = state_dict.pop(k)
k = k.replace('codec_lm.decoder.', 'llm_decoder.')
state_dict[k] = v
if k.startswith('lm_embedding.'):
v = state_dict.pop(k)
k = k.replace('lm_embedding.', 'llm_embedding.')
state_dict[k] = v
if k.startswith('codec_embedder.'):
v = state_dict.pop(k)
k = k.replace('codec_embedder.', 'speech_embedding.')
state_dict[k] = v
if k.startswith('text_enc_out_layer.'):
state_dict.pop(k)
if k.startswith('token_embedding.weight'):
state_dict.pop(k)
return state_dict
def convert_flow2(state_dict):
keys = list(state_dict.keys())
for k in keys:
if k.startswith('encoder.embed.'):
v = state_dict.pop(k)
k = k.replace('encoder.embed.', 'encoder.embed.out.')
state_dict[k] = v
for k in keys:
if k.startswith('xvec_proj.'):
v = state_dict.pop(k)
k = k.replace('xvec_proj.', 'spk_embed_affine_layer.')
state_dict[k] = v
for k in keys:
if k.startswith('mel_extractor.'):
state_dict.pop(k)
for k in keys:
if k.startswith('encoder.upsample_blocks.0.0.'):
v = state_dict.pop(k)
k = k.replace('encoder.upsample_blocks.0.0.', 'encoder.up_layer.')
state_dict[k] = v
if k.startswith('encoder.upsample_blocks.0.1.'):
v = state_dict.pop(k)
k = k.replace('encoder.upsample_blocks.0.1.', 'encoder.up_embed.out.')
state_dict[k] = v
if k.startswith('encoder.upsample_blocks.0.2.'):
v = state_dict.pop(k)
k = k.replace('encoder.upsample_blocks.0.2.', 'encoder.up_encoders.')
state_dict[k] = v
# CausalBlock1D中sequantial 1->2
if k.startswith('decoder.estimator.') and k.endswith('block.1.weight'):
v = state_dict.pop(k)
k = k.replace('block.1.weight', 'block.2.weight')
state_dict[k] = v
if k.startswith('decoder.estimator.') and k.endswith('block.1.bias'):
v = state_dict.pop(k)
k = k.replace('block.1.bias', 'block.2.bias')
state_dict[k] = v
return state_dict
if __name__ == '__main__':
# 使用方法 python3 convert.py 原格式llm.pt llm normalize 新格式llm.pt
# 或者 python3 convert.py 新格式llm.pt llm inverse_normalize 原格式llm.pt
state_dict = torch.load(sys.argv[1], map_location='cpu')
if sys.argv[2] == 'llm':
state_dict = convert_llm(state_dict)
elif sys.argv[2] == 'flow':
state_dict = convert_flow(state_dict)
elif sys.argv[2] == 'hift':
state_dict = convert_hift(state_dict)
elif sys.argv[2] == 'llm2':
state_dict = convert_llm2(state_dict)
elif sys.argv[2] == 'flow2':
state_dict = convert_flow2(state_dict)
else:
raise ValueError
torch.save(state_dict, sys.argv[4])
|