File size: 26,250 Bytes
5b4c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import numpy as np
import threading
import time
from torch.nn import functional as F
from contextlib import nullcontext
import uuid
from cosyvoice.utils.common import fade_in_out


class CosyVoiceModel:

    def __init__(self,
                 llm: torch.nn.Module,
                 flow: torch.nn.Module,
                 hift: torch.nn.Module,
                 fp16: bool):
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.llm = llm
        self.flow = flow
        self.hift = hift
        self.fp16 = fp16
        self.token_min_hop_len = 2 * self.flow.input_frame_rate
        self.token_max_hop_len = 4 * self.flow.input_frame_rate
        self.token_overlap_len = 20
        # mel fade in out
        self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256)
        self.mel_window = np.hamming(2 * self.mel_overlap_len)
        # hift cache
        self.mel_cache_len = 20
        self.source_cache_len = int(self.mel_cache_len * 256)
        # speech fade in out
        self.speech_window = np.hamming(2 * self.source_cache_len)
        # rtf and decoding related
        self.stream_scale_factor = 1
        assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
        self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
        self.lock = threading.Lock()
        # dict used to store session related variable
        self.tts_speech_token_dict = {}
        self.llm_end_dict = {}
        self.mel_overlap_dict = {}
        self.flow_cache_dict = {}
        self.hift_cache_dict = {}

    def load(self, llm_model, flow_model, hift_model):
        self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True)
        self.llm.to(self.device).eval()
        if self.fp16 is True:
            self.llm.half()
        self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=True)
        self.flow.to(self.device).eval()
        # in case hift_model is a hifigan model
        hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device).items()}
        self.hift.load_state_dict(hift_state_dict, strict=True)
        self.hift.to(self.device).eval()

    def load_jit(self, llm_text_encoder_model, llm_llm_model, flow_encoder_model):
        assert self.fp16 is True, "we only provide fp16 jit model, set fp16=True if you want to use jit model"
        llm_text_encoder = torch.jit.load(llm_text_encoder_model, map_location=self.device)
        self.llm.text_encoder = llm_text_encoder
        llm_llm = torch.jit.load(llm_llm_model, map_location=self.device)
        self.llm.llm = llm_llm
        flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
        self.flow.encoder = flow_encoder

    def load_onnx(self, flow_decoder_estimator_model):
        import onnxruntime
        option = onnxruntime.SessionOptions()
        option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
        option.intra_op_num_threads = 1
        providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
        del self.flow.decoder.estimator
        self.flow.decoder.estimator = onnxruntime.InferenceSession(flow_decoder_estimator_model, sess_options=option, providers=providers)

    def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
        if self.fp16 is True:
            llm_embedding = llm_embedding.half()
        with self.llm_context:
            for i in self.llm.inference(text=text.to(self.device),
                                        text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
                                        prompt_text=prompt_text.to(self.device),
                                        prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
                                        prompt_speech_token=llm_prompt_speech_token.to(self.device),
                                        prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
                                        embedding=llm_embedding.to(self.device)):
                self.tts_speech_token_dict[uuid].append(i)
        self.llm_end_dict[uuid] = True

    def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0):
        tts_mel, flow_cache = self.flow.inference(token=token.to(self.device),
                                                  token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
                                                  prompt_token=prompt_token.to(self.device),
                                                  prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
                                                  prompt_feat=prompt_feat.to(self.device),
                                                  prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
                                                  embedding=embedding.to(self.device),
                                                  flow_cache=self.flow_cache_dict[uuid])
        self.flow_cache_dict[uuid] = flow_cache

        # mel overlap fade in out
        if self.mel_overlap_dict[uuid].shape[2] != 0:
            tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window)
        # append hift cache
        if self.hift_cache_dict[uuid] is not None:
            hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
            tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
        else:
            hift_cache_source = torch.zeros(1, 1, 0)
        # keep overlap mel and hift cache
        if finalize is False:
            self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
            tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
            tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
            if self.hift_cache_dict[uuid] is not None:
                tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
            self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
                                          'source': tts_source[:, :, -self.source_cache_len:],
                                          'speech': tts_speech[:, -self.source_cache_len:]}
            tts_speech = tts_speech[:, :-self.source_cache_len]
        else:
            if speed != 1.0:
                assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
                tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
            tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
            if self.hift_cache_dict[uuid] is not None:
                tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
        return tts_speech

    def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
            prompt_text=torch.zeros(1, 0, dtype=torch.int32),
            llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
            flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
            prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
        # this_uuid is used to track variables related to this inference thread
        this_uuid = str(uuid.uuid1())
        with self.lock:
            self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
            self.hift_cache_dict[this_uuid] = None
            self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0)
            self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2)
        p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
        p.start()
        if stream is True:
            token_hop_len = self.token_min_hop_len
            while True:
                time.sleep(0.1)
                if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
                    this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
                        .unsqueeze(dim=0)
                    this_tts_speech = self.token2wav(token=this_tts_speech_token,
                                                     prompt_token=flow_prompt_speech_token,
                                                     prompt_feat=prompt_speech_feat,
                                                     embedding=flow_embedding,
                                                     uuid=this_uuid,
                                                     finalize=False)
                    yield {'tts_speech': this_tts_speech.cpu()}
                    with self.lock:
                        self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
                    # increase token_hop_len for better speech quality
                    token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
                if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
                    break
            p.join()
            # deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
            this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
            this_tts_speech = self.token2wav(token=this_tts_speech_token,
                                             prompt_token=flow_prompt_speech_token,
                                             prompt_feat=prompt_speech_feat,
                                             embedding=flow_embedding,
                                             uuid=this_uuid,
                                             finalize=True)
            yield {'tts_speech': this_tts_speech.cpu()}
        else:
            # deal with all tokens
            p.join()
            this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
            this_tts_speech = self.token2wav(token=this_tts_speech_token,
                                             prompt_token=flow_prompt_speech_token,
                                             prompt_feat=prompt_speech_feat,
                                             embedding=flow_embedding,
                                             uuid=this_uuid,
                                             finalize=True,
                                             speed=speed)
            yield {'tts_speech': this_tts_speech.cpu()}
        with self.lock:
            self.tts_speech_token_dict.pop(this_uuid)
            self.llm_end_dict.pop(this_uuid)
            self.mel_overlap_dict.pop(this_uuid)
            self.hift_cache_dict.pop(this_uuid)

    def vc(self, source_speech_token, flow_prompt_speech_token, prompt_speech_feat, flow_embedding, stream=False, speed=1.0, **kwargs):
        # this_uuid is used to track variables related to this inference thread
        this_uuid = str(uuid.uuid1())
        with self.lock:
            self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = source_speech_token.flatten().tolist(), True
            self.hift_cache_dict[this_uuid] = None
            self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0)
            self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2)
        if stream is True:
            token_hop_len = self.token_min_hop_len
            while True:
                if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
                    this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
                        .unsqueeze(dim=0)
                    this_tts_speech = self.token2wav(token=this_tts_speech_token,
                                                     prompt_token=flow_prompt_speech_token,
                                                     prompt_feat=prompt_speech_feat,
                                                     embedding=flow_embedding,
                                                     uuid=this_uuid,
                                                     finalize=False)
                    yield {'tts_speech': this_tts_speech.cpu()}
                    with self.lock:
                        self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
                    # increase token_hop_len for better speech quality
                    token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
                if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
                    break
            # deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
            this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid], dim=1).unsqueeze(dim=0)
            this_tts_speech = self.token2wav(token=this_tts_speech_token,
                                             prompt_token=flow_prompt_speech_token,
                                             prompt_feat=prompt_speech_feat,
                                             embedding=flow_embedding,
                                             uuid=this_uuid,
                                             finalize=True)
            yield {'tts_speech': this_tts_speech.cpu()}
        else:
            # deal with all tokens
            this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
            this_tts_speech = self.token2wav(token=this_tts_speech_token,
                                             prompt_token=flow_prompt_speech_token,
                                             prompt_feat=prompt_speech_feat,
                                             embedding=flow_embedding,
                                             uuid=this_uuid,
                                             finalize=True,
                                             speed=speed)
            yield {'tts_speech': this_tts_speech.cpu()}
        with self.lock:
            self.tts_speech_token_dict.pop(this_uuid)
            self.llm_end_dict.pop(this_uuid)
            self.mel_overlap_dict.pop(this_uuid)
            self.hift_cache_dict.pop(this_uuid)


class CosyVoice2Model:

    def __init__(self,
                 llm: torch.nn.Module,
                 flow: torch.nn.Module,
                 hift: torch.nn.Module):
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.llm = llm
        self.flow = flow
        self.hift = hift
        self.token_hop_len = 2 * self.flow.input_frame_rate
        # here we fix flow encoder/decoder decoding_chunk_size, in the future we will send it as arguments, or use cache
        self.flow.encoder.static_chunk_size = 2 * self.flow.input_frame_rate
        self.flow.decoder.estimator.static_chunk_size = 2 * self.flow.input_frame_rate * self.flow.token_mel_ratio
        # hift cache
        self.mel_cache_len = 8
        self.source_cache_len = int(self.mel_cache_len * 480)
        # speech fade in out
        self.speech_window = np.hamming(2 * self.source_cache_len)
        # rtf and decoding related
        self.stream_scale_factor = 1
        self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
        self.lock = threading.Lock()
        # dict used to store session related variable
        self.tts_speech_token_dict = {}
        self.llm_end_dict = {}
        self.hift_cache_dict = {}

    def load(self, llm_model, flow_model, hift_model):
        self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True)
        self.llm.to(self.device).eval()
        self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=True)
        self.flow.to(self.device).eval()
        self.flow.decoder.fp16 = False
        # in case hift_model is a hifigan model
        hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device).items()}
        self.hift.load_state_dict(hift_state_dict, strict=True)
        self.hift.to(self.device).eval()

    def load_jit(self, flow_encoder_model):
        flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
        self.flow.encoder = flow_encoder

    def load_onnx(self, flow_decoder_estimator_model):
        import onnxruntime
        option = onnxruntime.SessionOptions()
        option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
        option.intra_op_num_threads = 1
        providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
        del self.flow.decoder.estimator
        self.flow.decoder.estimator = onnxruntime.InferenceSession(flow_decoder_estimator_model, sess_options=option, providers=providers)

    def load_trt(self, flow_decoder_estimator_model):
        del self.flow.decoder.estimator
        import tensorrt as trt
        with open(flow_decoder_estimator_model, 'rb') as f:
            self.flow.decoder.estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
        self.flow.decoder.estimator = self.flow.decoder.estimator_engine.create_execution_context()
        self.flow.decoder.fp16 = True

    def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
        with self.llm_context:
            for i in self.llm.inference(text=text.to(self.device),
                                        text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
                                        prompt_text=prompt_text.to(self.device),
                                        prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
                                        prompt_speech_token=llm_prompt_speech_token.to(self.device),
                                        prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
                                        embedding=llm_embedding.to(self.device)):
                self.tts_speech_token_dict[uuid].append(i)
        self.llm_end_dict[uuid] = True

    def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, token_offset, finalize=False, speed=1.0):
        tts_mel, _ = self.flow.inference(token=token.to(self.device),
                                                  token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
                                                  prompt_token=prompt_token.to(self.device),
                                                  prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
                                                  prompt_feat=prompt_feat.to(self.device),
                                                  prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
                                                  embedding=embedding.to(self.device),
                                                  finalize=finalize)
        tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:]
        # append hift cache
        if self.hift_cache_dict[uuid] is not None:
            hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
            tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
        else:
            hift_cache_source = torch.zeros(1, 1, 0)
        # keep overlap mel and hift cache
        if finalize is False:
            tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
            if self.hift_cache_dict[uuid] is not None:
                tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
            self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
                                          'source': tts_source[:, :, -self.source_cache_len:],
                                          'speech': tts_speech[:, -self.source_cache_len:]}
            tts_speech = tts_speech[:, :-self.source_cache_len]
        else:
            if speed != 1.0:
                assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
                tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
            tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
            if self.hift_cache_dict[uuid] is not None:
                tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
        return tts_speech

    def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
            prompt_text=torch.zeros(1, 0, dtype=torch.int32),
            llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
            flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
            prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
        # this_uuid is used to track variables related to this inference thread
        this_uuid = str(uuid.uuid1())
        with self.lock:
            self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
            self.hift_cache_dict[this_uuid] = None
        p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
        p.start()
        if stream is True:
            token_offset = 0
            while True:
                time.sleep(0.1)
                if len(self.tts_speech_token_dict[this_uuid]) - token_offset >= self.token_hop_len + self.flow.pre_lookahead_len:
                    this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_offset + self.token_hop_len + self.flow.pre_lookahead_len]) \
                        .unsqueeze(dim=0)
                    this_tts_speech = self.token2wav(token=this_tts_speech_token,
                                                     prompt_token=flow_prompt_speech_token,
                                                     prompt_feat=prompt_speech_feat,
                                                     embedding=flow_embedding,
                                                     uuid=this_uuid,
                                                     token_offset=token_offset,
                                                     finalize=False)
                    token_offset += self.token_hop_len
                    yield {'tts_speech': this_tts_speech.cpu()}
                if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) - token_offset < self.token_hop_len + self.flow.pre_lookahead_len:
                    break
            p.join()
            # deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
            this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
            this_tts_speech = self.token2wav(token=this_tts_speech_token,
                                             prompt_token=flow_prompt_speech_token,
                                             prompt_feat=prompt_speech_feat,
                                             embedding=flow_embedding,
                                             uuid=this_uuid,
                                             token_offset=token_offset,
                                             finalize=True)
            yield {'tts_speech': this_tts_speech.cpu()}
        else:
            # deal with all tokens
            p.join()
            this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
            this_tts_speech = self.token2wav(token=this_tts_speech_token,
                                             prompt_token=flow_prompt_speech_token,
                                             prompt_feat=prompt_speech_feat,
                                             embedding=flow_embedding,
                                             uuid=this_uuid,
                                             token_offset=0,
                                             finalize=True,
                                             speed=speed)
            yield {'tts_speech': this_tts_speech.cpu()}
        with self.lock:
            self.tts_speech_token_dict.pop(this_uuid)
            self.llm_end_dict.pop(this_uuid)