Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -36,8 +36,10 @@ def preprocess_text(text):
|
|
36 |
|
37 |
# Combine relevant text columns for processing
|
38 |
question_columns = [f'Q{i}' for i in range(1, 37)] # Adjust the range based on your data columns
|
39 |
-
data['processed_text'] = data[['CV/Resume'] + question_columns].agg(' '.join, axis=1)
|
40 |
-
|
|
|
|
|
41 |
|
42 |
labels = ["Peacemaker", "Loyalist", "Achiever", "Reformer", "Individualist", "Helper", "Challenger", "Investigator", "Enthusiast"]
|
43 |
|
@@ -47,9 +49,9 @@ confidence_threshold = st.slider("Confidence Threshold", 0.0, 1.0, 0.5)
|
|
47 |
if st.button("Predict Personality by Test"):
|
48 |
# Function to apply predictions using dynamic labels from MAX1, MAX2, MAX3 and only return the highest scored label
|
49 |
def get_predictions(row):
|
50 |
-
|
51 |
processed_text = row['processed_text']
|
52 |
-
result = classifier(processed_text,
|
53 |
highest_score_label = result['labels'][0] # Assumes the labels are sorted by score, highest first
|
54 |
return highest_score_label
|
55 |
|
|
|
36 |
|
37 |
# Combine relevant text columns for processing
|
38 |
question_columns = [f'Q{i}' for i in range(1, 37)] # Adjust the range based on your data columns
|
39 |
+
data['processed_text'] = data[['CV/Resume'] + question_columns].agg(' '.join, axis=1)
|
40 |
+
#data['processed_text'] = data[['CV/Resume'] + question_columns].agg(' '.join, axis=1).apply(preprocess_text)
|
41 |
+
data_open['processed_text_open'] = data_open[['CV/Resume', 'Question']].agg(' '.join, axis=1)
|
42 |
+
#data_open['processed_text_open'] = data_open[['CV/Resume', 'Question']].agg(' '.join, axis=1).apply(preprocess_text)
|
43 |
|
44 |
labels = ["Peacemaker", "Loyalist", "Achiever", "Reformer", "Individualist", "Helper", "Challenger", "Investigator", "Enthusiast"]
|
45 |
|
|
|
49 |
if st.button("Predict Personality by Test"):
|
50 |
# Function to apply predictions using dynamic labels from MAX1, MAX2, MAX3 and only return the highest scored label
|
51 |
def get_predictions(row):
|
52 |
+
custom_labels = [row['MAX1'], row['MAX2'], row['MAX3']] # Get labels from each row
|
53 |
processed_text = row['processed_text']
|
54 |
+
result = classifier(processed_text, custom_labels)
|
55 |
highest_score_label = result['labels'][0] # Assumes the labels are sorted by score, highest first
|
56 |
return highest_score_label
|
57 |
|