Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -36,10 +36,12 @@ def preprocess_text(text):
|
|
36 |
|
37 |
# Combine relevant text columns for processing
|
38 |
question_columns = [f'Q{i}' for i in range(1, 37)] # Adjust the range based on your data columns
|
39 |
-
data['processed_text'] = data[['CV/Resume'] + question_columns].agg(' '.join, axis=1)
|
40 |
-
#data['processed_text'] = data[['CV/Resume'] + question_columns].agg(' '.join, axis=1).apply(preprocess_text)
|
41 |
data_open['processed_text_open'] = data_open[['CV/Resume', 'Question']].agg(' '.join, axis=1)
|
42 |
#data_open['processed_text_open'] = data_open[['CV/Resume', 'Question']].agg(' '.join, axis=1).apply(preprocess_text)
|
|
|
|
|
43 |
|
44 |
labels = ["Peacemaker", "Loyalist", "Achiever", "Reformer", "Individualist", "Helper", "Challenger", "Investigator", "Enthusiast"]
|
45 |
|
@@ -57,7 +59,7 @@ if st.button("Predict Personality by Test"):
|
|
57 |
|
58 |
# Apply predictions across all rows
|
59 |
data['Predicted'] = data.apply(get_predictions, axis=1)
|
60 |
-
st.dataframe(data[['True_label','MAX1','MAX2','MAX3',
|
61 |
|
62 |
if st.button("Predict Personality by Open Question"):
|
63 |
def get_predictions(row):
|
@@ -65,7 +67,14 @@ if st.button("Predict Personality by Open Question"):
|
|
65 |
result = classifier(processed_text, labels)
|
66 |
highest_score_label = result['labels'][0] # Assumes the labels are sorted by score, highest first
|
67 |
return highest_score_label
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
# Apply predictions across all rows
|
70 |
-
data_open['
|
71 |
-
|
|
|
|
36 |
|
37 |
# Combine relevant text columns for processing
|
38 |
question_columns = [f'Q{i}' for i in range(1, 37)] # Adjust the range based on your data columns
|
39 |
+
data['processed_text'] = data[['CV/Resume'] + question_columns].agg(lambda x: ', '.join(x), axis=1)
|
40 |
+
#data['processed_text'] = data[['CV/Resume'] + question_columns].agg(lambda x: ', '.join(x), axis=1).apply(preprocess_text)
|
41 |
data_open['processed_text_open'] = data_open[['CV/Resume', 'Question']].agg(' '.join, axis=1)
|
42 |
#data_open['processed_text_open'] = data_open[['CV/Resume', 'Question']].agg(' '.join, axis=1).apply(preprocess_text)
|
43 |
+
data_open['processed_text_open'] = data_open[['Demo_F', 'Question']].agg(' '.join, axis=1)
|
44 |
+
data_open['processed_text_mopen'] = data_open[['Demo_M', 'Question']].agg(' '.join, axis=1)
|
45 |
|
46 |
labels = ["Peacemaker", "Loyalist", "Achiever", "Reformer", "Individualist", "Helper", "Challenger", "Investigator", "Enthusiast"]
|
47 |
|
|
|
59 |
|
60 |
# Apply predictions across all rows
|
61 |
data['Predicted'] = data.apply(get_predictions, axis=1)
|
62 |
+
st.dataframe(data[['True_label','MAX1','MAX2','MAX3', 'Predicted']])
|
63 |
|
64 |
if st.button("Predict Personality by Open Question"):
|
65 |
def get_predictions(row):
|
|
|
67 |
result = classifier(processed_text, labels)
|
68 |
highest_score_label = result['labels'][0] # Assumes the labels are sorted by score, highest first
|
69 |
return highest_score_label
|
70 |
+
|
71 |
+
def get_predictionsM(row):
|
72 |
+
processed_text = row['processed_text_mopen']
|
73 |
+
result = classifier(processed_text, labels)
|
74 |
+
highest_score_label = result['labels'][0] # Assumes the labels are sorted by score, highest first
|
75 |
+
return highest_score_label
|
76 |
|
77 |
# Apply predictions across all rows
|
78 |
+
data_open['Predicted_M'] = data_open.apply(get_predictions, axis=1)
|
79 |
+
data_open['Predicted_F'] = data_open.apply(get_predictionsM, axis=1)
|
80 |
+
st.dataframe(data_open[['True_label', 'Predicted_F', 'Predicted_M']])
|